

Cobra VG330 Single-Chip

Hardware Reference Platform

Technical Manual

Cobra VG330 Single-Chip Hardware Reference Platform Technical Manual

Document No. RM230001-02

Copyright 1996 Vadem All Rights Reserved

Information furnished by Vadem is believed to be accurate and reliable. However, no responsibility is assumed by Vadem for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Vadem. Vadem reserves the right to change specifications at any time without notice.

Trademarks mentioned herein belong to their respective companies.

Medical Disclaimer

Vadem's products are not authorized for use in life support devices or systems or in any medical applications and cannot be used in such applications without the written consent of the President of Vadem.

Preface

	This manual is the primary reference and user's guide for the Vadem Cobra VG-330 Single-Chip Hardware Reference Platform, commonly referred to as Cobra in this manual.	
Audience	This document assumes that you have some familiarity with personal com puters, microprocessors, and related support devices. The people who be efit from this book are:	
	 Managers and engineers who are considering the use of Cobra in a por- table design. 	
Related Publications	VG330 Product Data Manual—DM330001	
	VG330 OEM BIOS Specification—DM330002	
	VG330EVAL Evaluation Kit User's Manual—DM330003	
	VG330ADPT BIOS Adaptation Kit Data Manual—DM330004	
	VG330 Debugger Utility User's Manual—DM330005	
	VG330 Configuration Utility User's Manual—DM330006	
	VG330 Product Functional Description—FD330001	
	VG330ICE In-Circuit Emulator Product Brief—PB330001	
	VG330BIOS Single-Chip Firmware Product Brief—PB330002	
	VG330EVAL Evaluation Board Product Brief—PB330003	
	VG330 Single-Chip Platform Product Brief—PB330004	
	VG330ADPT BIOS Adaptation Kit Product Brief—PB330005	
	VG330 Power Management White Paper—WP330001	
	Cobra Software User's Guide	

Conventions Used in	The first time a word or phrase is defined in this manual, it is <i>italicized</i> .
This Manual	The following signal naming conventions are used throughout this manual:
	 A level-significant signal that is true or valid when the signal is LOW is preceded with an asterisk (*) or slash (/).
	 An edge-significant signal that initiates actions on a HIGH-to-LOW tran- sition is preceded with an asterisk (*) or slash (/).
	The word assert means to drive a signal true or active. The word deassert

The word *assert* means to drive a signal true or active. The word *deassert* means to drive a signal false or inactive.

Hexadecimal numbers are indicated by the suffix "h"— for example 0Ah. Binary numbers are indicated by a subscripted "2" following the number—for example, $0011.0010.1100.1111_2$.

Contents

	1.1	Introduction	1-1
	1.2	Features	1-2
	1.3	System Architecture	1-3
	1.4		
	1.5	Block Diagram	1-4
	1.6	Demonstration Kit	1-6
	1.7	Operating Cobra	1-6
	1.8	Hardware Description	1-7
		1.8.1 Printed Circuit Board (PCB)	1-7
		1.8.2 Hardware Component Descriptions	1-8
	1.9	Bill of Material	1-15
Figures	1.1	Cobra Block Diagram	1-5
	1.2	Demonstration Unit	1-6
	1.3	Cobra PCB (top)	1-7
	1.4	Cobra PCB (bottom).	1-8
	1.5	VG330 Block Diagram	1-9
	1.6	MAX148 A/D Converter Block Diagram	1-11
	1.7	Digitizer Electronics	1-13
	1.8	LCD Block Diagram	1-14
Tables	1.1	Touch Panel Specifications	1-12
Tables			
Tables	12	Switch States for Diditizer	1-1.3
Tables	1.2 1.3	Switch States for Digitizer LCD Specifications	1-13 1-14

Cobra VG330 Single-Chip Hardware Reference Platform

This document describes an application of Vadem's technology capabilities to a portable, low-power system, the Cobra VG330 Single-Chip Hardware Reference Platform, commonly referred to in this document as Cobra.

1.1 Vadem provides enabling technology for hand-held electronic data processing prod-Introduction Ucts. It has expertise in single-chip microcomputers and power-management for lowpower handheld products. Vadem has designed a custom, low-power single-chip solution for OEMs wishing to create battery-efficient handheld systems. This can reduce the time-to-market for creation of new leading-edge portable data products.

Vadem's technological knowledge, backed by experience and numerous successful designs, can help you quickly bring to market low power, highly integrated competitive products. Vadem can provide you with the tools needed to enter a market fast.

Cobra is only one example of many different solutions, applications, and operating systems which can be built on Vadem's single-chip platforms.

1.2 Cobra has the following features: Features

- Vadem VG330 single-chip PC platform
 - A total of 2 MByte of DRAM consisting of a single 1M x 16 DRAM
 - 4 MBytes of FLASH EPROM, consisting of two 1M x 16 FLASH devices
 - Power Supply Unit
 - LCD display
 - Digitizer/touch panel using 10-bit serial A/D converter
 - ♦ VG330 Firmware/BIOS
 - Graphical OS Software & Applications
 - PC Card Slot
 - Enclosure and hardware
 - Infra-red communications transceiver

1.3 Vadem' s approach for Cobra was to develop a small, handheld client device to provide email, web browsing, and general interconnectivity with few device resources.
 Architecture

Cobra contains bundled firmware and application software, allowing a "plug 'n play" solution for internet and world-wide-web access.

The application software consists of:

- ♦ HTML 2.0-compatible Web Browser
- ♦ E-mail
- ♦ Usenet

You can customize Cobra with an API for lower-level firmware and use standard development tools based on DOS to develop your own applications. This toolkit approach of a well-documented API plus standard DOS development tools allows easy application development for the OEM consumer. The standard software development tools allow you to compile, assemble, link, locate, and debug using DOS. You can link into the libraries provided by Vadem, form an executable file for the VG330, and put the image into ROM.

A version of the kernel can run on top of DOS, so while you are prototyping, you can develop all the applications for DOS, and prototype with them. After you have finished debugging, you can use the same API that you use on the kernel, then use the new kernel libraries that do not have DOS function calls to eliminate the overhead associated with DOS.

1.4	Cobra was developed with two specific objectives:
Design Objectives	 Provide OEM developers with full schematics and documentation for a working design
	 Show that a working device can be built, using 2-AA batteries, in a most compact design, with a low bill of materials costs
	Cobra can be used as a baseline development architecture for a system running the an operating system that allows hardware management as well as connection to an internet mediation server.
	Cobra highlights the power, size and integration capabilities of Vadem's low cost sin- gle-chip processors, and demonstrates how easy it is to build a light weight, portable, pen-based personal information manager using Vadem technology.
	Cobra combines the state-of-the-art technologies of Vadem's VG330 single chip com- puter with a PC Card and a Graphical User Interface (GUI) with pen input. It shows how easy it can be to create a PDA (Personal Digital Assistant), a PIM (Personal Infor- mation Manager), a PDT (Portable Data Terminal), or a general purpose Electronic Organizer. The system demonstrates that a design can achieve powerful functionality while retaining the low cost and low power requirements for hand-held devices.
	Cobra uses a pen-input, graphical user interface (GUI) based operating system together with Vadem firmware. The system runs applications such as a web browser, graphical e-mail, and usenet.
	Vadem's objective for this design is to demonstrate the ability to build a light weight, cost-effective, personal information manager running on two AA batteries. Vadem's patented power management technology and system level integration are among the critical factors that contribute to the design's success.
	Cobra is provided with a generic case; however, OEMs are free to choose their own case design. There are few ICs required on the board because most of the system level components are already integrated into Vadem's VG330. As a result, the design achieves reduced power consumption and compact size.
	Cobra demonstrates Vadem's ability to design a product with increased levels of func- tionality, while maintaining the low cost and low power consumption requirements for hand-held devices.

1.5 Block Diagram Figure 1.1 is a high-level Cobra block diagram.

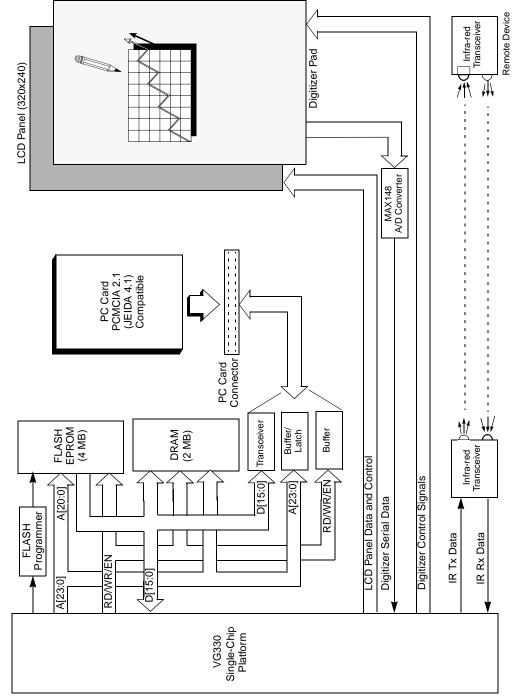
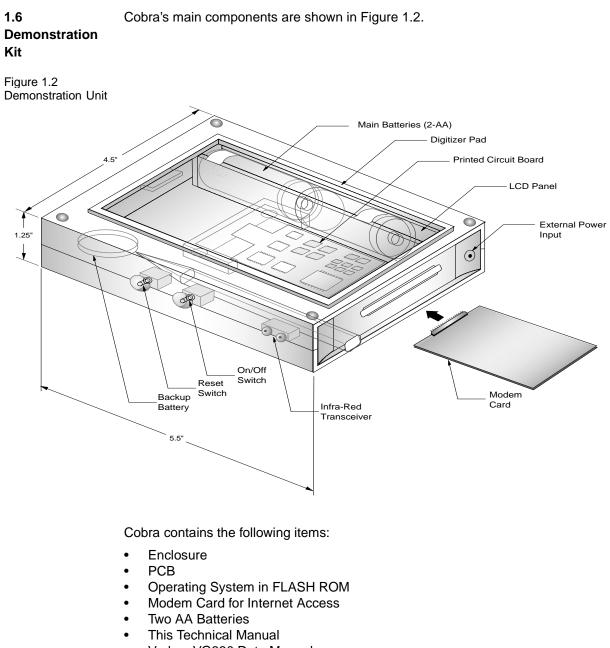



Figure 1.1 Cobra Block Diagram

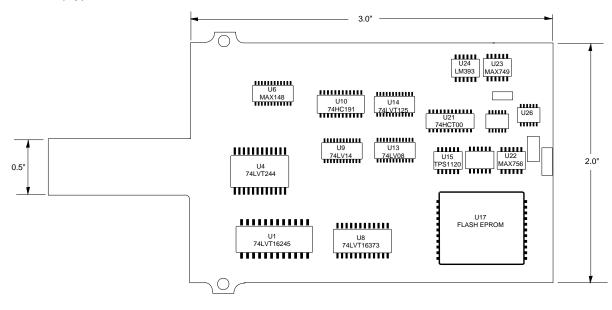
• Vadem VG330 Data Manual

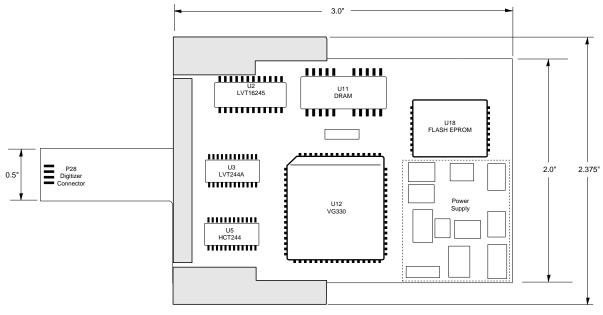
Cobra is easy to use. Follow these steps to prepare it for use:

- 1. Install two fresh AA batteries.
 - 2. Install the modem PC Card card in the PC Card slot.
 - 3. Push the ON button.
 - 4. Follow the instructions on the LCD screen.

1.7

Operating


Cobra


1.8	Cobra includes a PCB with its components and a small form factor digitizer tablet
Hardware	overlaid on an LCD. The LCD/Digitizer can be replaced by an LCD/Digitizer of the
Description	customer's own choosing, allowing any size to be considered.

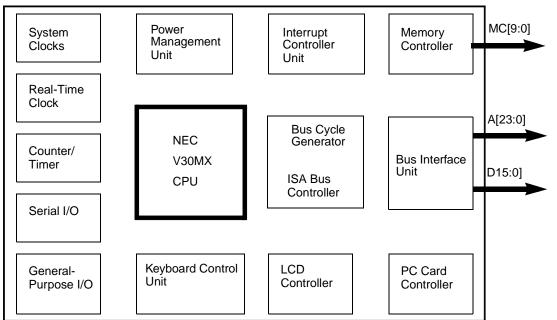
1.8.1 The Cobra PCB contains the following principal hardware elements, as shown in Figure 1.3 and Figure 1.4. **Printed Circuit** Board (PCB)

- Vadem VG330 single-chip PC platform •
- 2 MByte of DRAM •
- 4 MBytes of FLASH memory configured as two 1M x 16 flash ROMs, •
- Power Supply Unit
- LCD display •
- Digitizer/touch panel using 10-bit A/D converter
- VG330 Firmware/BIOS •
- PC Card Slot

Figure 1.3 Cobra PCB (top)

This section describes the main hardware components in more detail.

1.8.2 Hardware Component Descriptions


1.8.2.1 Vadem VG330

The Vadem VG330 is a single 160-pin CMOS chip. Vadem's custom design makes it easy for OEMs to develop low-power, yet cost-sensitive, DOS-based personal electronic products. The VG330 integrates the following, as illustrated in Figure 1.5.

- 32-MHz NEC V30MX processor (16-bit, 80186-compatible CPU)
- PC Card 2.10/ExCA/JEIDA 4.2 controller
- 8254-compatible Counter/Timer
- 16450-compatible serial port with HP infra-red interface option
- RTC (Real-Time Clock)
- LCD controller, supporting CGA 640x200, AT&T 640x400, and VGA 640x480 monochrome graphics modes
- Interrupt Controller
- XT-compatible keyboard interface (scanning up to 101 keys) and a matrix keypad scanner
- LIM 4.0-compatible EMS memory subsystem, supporting DRAM, SRAM, or PSRAM
- Vadem Power Management Unit (PMU)

- 24 GPIO (General-Purpose I/O) pins, for flexible configuration of inputs and outputs
- ISA Bus controller, capable of 8- and 16-bit memory and I/O cycles, similar to PC-AT bus cycles
- Bus Cycle Generator, which controls all timing
- Bus Interface Unit, controlling external ISA bus and internal address and data path handling

1.8.2.2

Memory

The Cobra demonstration unit contains 2 Mbytes of DRAM, shown on sheet 4 of the schematic. The DRAM addressing conforms to the Memory Controller Pin Functions table in Chapter 6, "Memory Controller Unit," of the VG330 Data Manual.

DRAM Memory – Memory control lines MC6 and MC7 control /LCAS and /UCAS, while MC8 and MC9 control /OE and /WE. The bank selection is done by MC0, which is connected to the /RAS pin of the DRAM.

FLASH ROM Memory – The ROM memory in the demo unit consists of two 1Mx16 FLASH ROMs, for a total of 4 Mbytes. /SMRD is used to control /OE for both ROMs. The two are addressed by setting either /ROMEN active or /ROMCE1 active. Designers may choose to use other ROM sizes. A design may use only one ROM bank accessed by /ROMEN, if required, in which case /ROMCE1 would go unused.

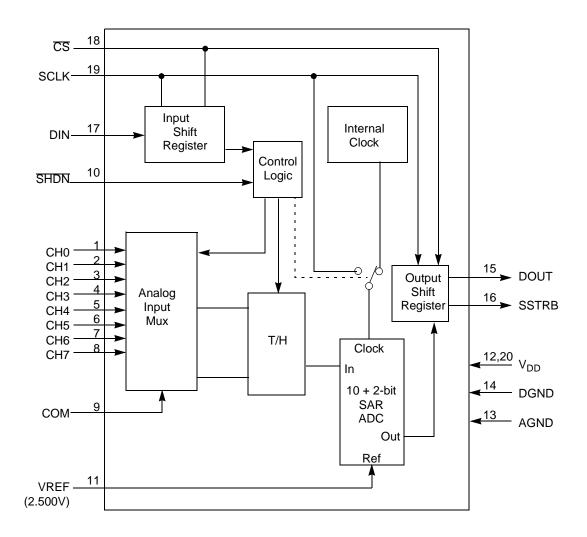
1.8.2.3 PCMCIA

Cobra has one card slot that complies with PC Card 2.10 (JEIDA 4.1) standards. This is shown on sheet 5 of the schematic.

1.8.2.4 Infrared Communication (IrDA)

For purposes of illustration, Cobra includes components to show how infrared communication can be easily included in a design, but software drivers are not included at this time with the hardware.

Cobra uses Temic's TFDS3000 Infrared IrDA Integrated Transceiver Circuit, which is connected to the VG330's serial port IR_RXD and IR_TXD signals. The IR_RXD and IR_TXD signals are two of the VG330's GPIO (General Purpose Input/Output) pins.


Temic's TFDS3000 IrDA Integrated Transceiver connects to the VG330 and contains an integrated photo-diode and LED. The transceiver RXD output is inverted before being sent to the VG330 as IR_RXD, and the VG330 IR_TXD signal is fed through a tri-state buffer before being sent to the transceiver as TXD. The TFDS3000 transmits and receives the pulse shaped bit stream and can be shut down for power management under control of the VG330 /IRDA_EN signal.

The IrDA standard allows data rates from 2.4kBaud up to 115kBaud.

1.8.2.5 A/D Converter

Cobra uses Maxim's MAX148, a 10-bit serial Analog-to-Digital Converter with an internal Track/Hold and a sampling rate of 133KHz. The converter is shown on sheet 7 of the schematic, and shown in Figure 1.6.

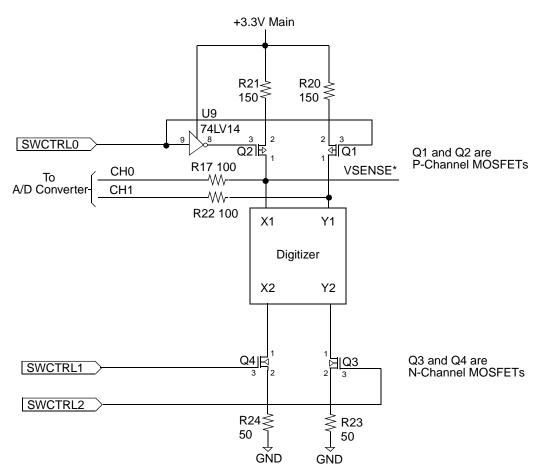
The device can be used in 8-channel single-ended mode, or 4-channel differential mode. The present Cobra design uses single-ended mode. An auto-calibration cycle eliminates need for offset or gain adjustment. Conversion results are available through a serial output.

1.8.2.6 Touch Panel

The demonstration unit uses a GUNZE G-20 (resistive touch panel) digitizer. It works in conjunction with custom pen driver software to display digital ink on the LCD display. The performance specifications are listed in Table 1.1.

Table 1.1 Touch Panel Specifications

Electrical		
Parameter	Value	
Maximum voltage	5 VDC.	
Maximum current	Less than 1 mA at contact point of top layer with bottom layer	
Operating temperature	0 °C to 50 °C	
Operating Humidity	20% to 85% (non-condensing)	
Non-Operating temperature	-10 °C to 60 °C	
Non-Operating humidity	20% to 90% (non-condensing)	
Terminal resistance	between XL and XR: 250 to 760 ohms between YU and YL: 250 to 760 ohms	
Linearity	+/- 1%	
Insulation resistance	10 megohm or more at 26 VDC	


Mechanical		
Input	±0.8 stylus or finger	
Actuation force	10 - 80 grams	
Transparency	Typical 78%	
Surface hardness	Pencil hardness 3H or more according to IIS-K6400	

The touch panel operates by producing an X axis and a Y axis resistance value that corresponds to where the pen is pressed. These values are read by passing a voltage through the panel on each axis and measuring the output voltage for that axis. Refer to Figure 1.7.

Refer to sheet 7 of the schematic for details of the MOSFET switches used in this design. Switch Control signals SWCTRL[2:0] open and close the MOSFETs, Q1-Q4, shown on that sheet and in Table 1.2.

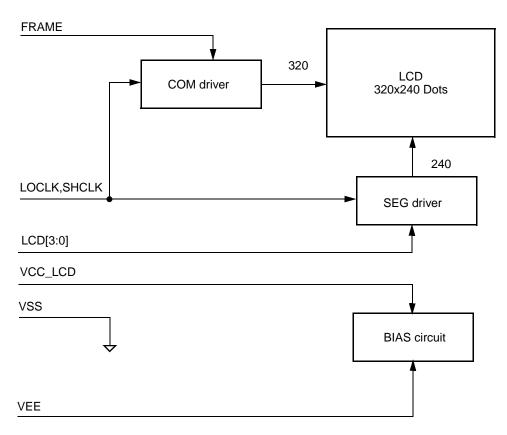
The digitizer output is read as follows: hardware detection of pen-down causes the firmware to control reading of one digitizer axis at a time. For example, the Y-axis value is read by turning Q1 and Q3 on to provide a voltage across the Y axis of the digitizer sheet. Analog voltage CH1 is buffered and sent to an input of the A to D converter, where it is converted to a digitized value.

Designers may use their own choice of vendor for the Digitizer Panel.

* The VSENSE signal is used for detecting pen-down (see schematic page 7)

Table 1.2 Switch States for Digitizer

	Switch State			
State	Q1	Q2	Q3	Q4
Waiting for pen-down	Closed	Open	Open	Open
Pen-down, scan X (A/D converter reads CH0)	Open	Closed	Open	Closed
Pen-down, Scan Y (A/D converter reads CH1)	Closed	Open	Closed	Open


1.8.2.7 Liquid Crystal Display

The LCD used is a Sharp LM320081 passive matrix LCD. It has an integrated decoder for the external 4-bit parallel data bus and has the following basic specifications:

Table 1.3 LCD Specifications

Parameter	Value
Dot size	.28 mm
Dot pitch	.30 mm
Pixel Resolution	320 dots W x 240 dots H
Active viewing area	100W x 76H (mm)

Figure 1.8 LCD Block Diagram

Note: Vadem chose the Sharp LCD used in the demonstration unit for size, quality and availability. Designers may of course select their own choice of vendor for the LCD Panel. Samsung's UG32F07FNBRX-A panel is a low cost alternative

1.8.2.8

Power Supply

Main power to Cobra comes from two AA batteries. A Maxim MAX756 device steps up the battery voltage to 3.3V, which powers most of Cobra's electronics. A Maxim MAX777 device provides +5V to run the LCD panel and PCMCIA card. A MAX858 device provides 3.3V from the lithium backup battery to maintain the system configuration information while the AA batteries are being changed.

The Power Management Unit (PMU) of the VG330 supplies signals for controlling power to the ROM, LCD and PCMCIA card. These switches are implemented using a TPS1120D MOSFET switch.

1.9	The bill of materials for Cobra is shown in Table 1.4
Bill of Materials	

Table 1.4 Bill of Materials

Item	Quantity	Reference	Part Description
1	1	D6	1N4148
2	39	C1, C2, C3, C5, C6, C7, C9, C10, Cl1, C12, C13, C14, C15, C17, C18, C20, C21, C22, C23, C24, C25, C26, C27, C28, C31, C32, C35, C36, C38, C44, C45, C46, C47, C48, C50, C53, C56, C57, C58	0.l uF
3	3	C4, C8, C43	100 pF
4	1	C16	0.00l uF
5	1	Cl9	470 pF
6	2	C29, C30	15 pF
7	4	C33, C34, C51, C54	100 uF
8	2	C40, C37	22 pF
9	1	C39	0.0033 uF
10	1	C41	150 uF
11	2	C42, C49	22 uF
12	1	C52	0.0l uF
13	1	C55	6.8 uF
14	1	D1	12V
15	1	D2	IN5818
16	1	D3	IN5817
17	3	D4, D5, U20	IN914
18	2	JP5, JP1,JP9	HEADER 12
19	2	JP3, JP2	2-W
20	2	JP4, JP10	HEADER 2
21	1	JP7	HEADER 5
22	1	JP8	3-W
23	1	L1	4.7 uH
24	1	L2	I0 uH

Table 1.4 Bill of Materials

Item	Quantity	Reference	Part Description
25	1	L3	22 uH
26	2	L4, L5	47 uH
27	1	P1	DIGITIZER
28	1	P2	PCMCIA
29	2	Q2, Q1	BSS84ZXCT-ND
30	3	Q3, Q4, Q6	ZVN3310FCT-ND
31	1	Q5	PMBT2222A
32	1	Q7	ZTX750
33	20	R1, R2, R3, R6, R9, R10, R12, R13, R14, R18, Rl9, R25, R37, R70, R71, R72, R75, R76,R777,R78	
34	2	R4, R39	100K
35	15	R5, R11, R16, R26, R27, R29, R35, R36, R38, R40, R44, R59, R61, R62, R63	47K
36	3	R7, R48, R74	1M
37	1	R15	220
38	2	R17, R22	100
39	2	R20, R21	150
40	2	R23, R24	50
41	2	R28, R54	10K
42	1	R32	10 ohm
43	1	R34	12K
44	1	R41	450K
45	4	R42, R43, R45, R50	100K 1%
46	1	R46	4.3K
40	1	R47	1.64M
48	1	R49	470
49	2	R69, R51	100 OHM
50	1	R53	470K 1%
51	2	R65, R56	1M 1%
52	1	R57	0.5
53	1	R58	43K 1%
54	1	R60	3K
55	1	R66	600K 1%
56	1	R67	4.7 OHM
50		R68	2K
	1	R73	
58 59	1 2		IM 1% TP
		TP2, TP1	TP
60	1	TP3	
61	1	U1	74LVT16245
62	1	U2	74LVT16244
63	1	U3	74HC244
64	1	U4	74LVT244
65	1	U5	74HCT244
66	1	U6	MAX148
67	2	U25, U7	MAX811
68	1	U8	74LVT16373
69	1	U9	74LV14
70	1	U10	74HC191

Item	Quantity	Reference	Part Description
71	1	U11	M5M4V18160BTP
72	1	U12	VG-330
73	1	U13	74LV08
74	1	U14	74LVT125
75	1	U15	TPS1120D
76	2	U17, U18	LH28F016SU
77	1	U19	MAX777
78	1	U21	74HCT00
79	1	U22	MAX756
80	1	U23	MAX749
81	1	U24	LM393
82	1	U26	MAX858
83	1	U27	TFDS3000
84	1	U28	TPS1120
85	1	Y1	32.768 KHz
86	1	Y2	32 MHz

Table 1.4 Bill of Materials