

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 1

CD1865

Intelligent Eight-Channel Communications Controller

 Datasheet

Lead-Free (RoHS compliant) version is also available.

Eight full-duplex asynchronous channels supporting data rates up to 115.2 kbps Note: To
support this data rate, the specified system clock frequency is required.

Register-based interrupt acknowledges eliminate need for separate interrupt acknowledge
signals

Automatic prioritizing scheme allows device to respond to an interrupt acknowledge with
the highest internal interrupt pending (host-programmable) Sophisticated interrupt schemes

— Vectored interrupts

— Fair Share interrupts

—Good Data interrupts for improved throughput

— Simultaneous interrupt requests for three classes of interrupts: Rx, Tx, and modem state
changes

Independent baud-rate generators for each channel/direction

Software compatibility with the CD180 and
CD1864 devices

Generation and detection of special characters

Automatic flow control

— In-band (Xon, Xoff generation, and detection)

— Out-of-band (DTR/DSR or RTS/CTS) On-chip FIFO — 8 bytes each for Rx, Tx, and Status

Line break detection and generation Multiple-chip daisy-chain cascading feature

Odd, even, forced, or no parity

 modem/general-purpose I/O signals per channel

System clock up to 66 MHz (x2), 33MHz
(x1)

CMOS technology in 100-pin MQFP

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 2 Datasheet

Information in this document is provided in connection with Amphus® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Amphus’ Terms and Conditions of Sale for such products, Amphus assumes no
liability whatsoever, and Amphus disclaims any express or implied warranty, relating to sale and/or use of Amphus products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Amphus
products are not intended for use in medical, life saving, or life sustaining applications.

Amphus may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Amphus reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The VG-PD6729 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Amphus sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Amphus literature may be obtained by calling (408)
850-1159 (main phone/fax), (408) 850-1179 (sales), by visiting Amphus’ website at http://www.amphus.com or by sending email to
Amphus.Sales@amphus.com.

Copyright © Amphus Corporation, 2006

*Third-party brands and names are the property of their respective owners.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 3

Contents

1.0 Overview .. 10

1.1 Theory of Operation .. 10

2.0 Conventions ... 13

2.1 Abbreviations... 13
2.2 Acronyms .. 13

3.0 Device Selection Considerations .. 15

4.0 Pin Information.. 16

4.1 Pin Diagram... 16
4.2 Pin Assignments.. 17

5.0 Functional Description.. 18

5.1 Introduction.. 18
5.2 Internal Operation.. 20
5.3 Service Request and Interrupt Operation ... 26

5.3.1 Theory of Operation .. 26
5.3.2 Internal Implementation of the Service Request Logic 28
5.3.3 Priorities and Fair Share.. 31

5.4 Types of Service Requests .. 31
5.4.1 Receive Service Requests .. 32
5.4.2 Transmit Service Requests ... 35
5.4.3 Modem Signal Change Service Requests... 35

5.5 Implementing Service Requests.. 35
5.5.1 Method 1a — Full Interrupt – Type A, Three-Level Interrupt

with Three-Level Acknowledge .. 37
5.5.2 Method 1b — Full Interrupt – Type B, Three-Level

Interrupt with Single-Level Acknowledge ... 38
5.5.3 Method 2b — Interrupt Interface, Single-Level

Interrupt with Single-Level Acknowledge .. 39
5.5.4 Method 3b — Polled Interface ... 40
5.5.5 Comparison of Interrupt and Polled Code Sequences 42
5.5.6 Cascading Service Requests with Multiple CD1865s 43
5.5.7 Multiple CD1865s without Cascading... 44
5.5.8 Acknowledging Service Requests .. 44

6.0 System Bus Interface and System Clock ... 46

6.1 System Interface Considerations .. 47
6.2 System Clock and Bit Rate Options .. 47

6.2.1 System Clock ... 47
6.2.2 External Clock .. 47
6.2.3 1 Clock Option .. 48
6.2.4 Bit Rate Options ... 48
6.2.5 Maximum Throughput Limits .. 51

6.3 CD1865 Basic Bus Interface and Addressing ... 51
6.3.1 Intel‚ Versus Motorola‚ Interface Signals and Addressing 51

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 4 Datasheet

 6.3.2 Unclocked Versus Clocked Bus Interface .. 52
6.4 Interface Examples ... 54

6.4.1 Interfacing to 80X86-Family Processors .. 55
6.4.2 Interfacing to 680X0-Family Processors .. 55
6.4.3 Interfacing to the VME Bus .. 55

7.0 Serial Interfaces .. 58

7.1 Receiver Operation ... 58
7.1.1 Basic Operation.. 58
7.1.2 Receive FIFO Operation .. 58
7.1.3 FIFO Timer Operations .. 60
7.1.4 Receive Service Requests ... 60
7.1.5 Receive Good Data‰ Service Request ... 61
7.1.6 Receive Exception Service Request .. 61
7.1.7 Types of Errors... 62
7.1.8 Types of Exceptions ... 62
7.1.9 Flow-Control Characters .. 63
7.1.10 Programming Notes ... 68

7.2 Transmitter Operation ... 68
7.2.1 Basic Operation.. 68
7.2.2 FIFO Operation .. 69
7.2.3 Transmit Service Requests .. 69
7.2.4 Special Transmitter Commands ... 70
7.2.5 Special Character Transmission by Send

Special Character Command ... 70
7.2.6 Embedded Transmit Commands.. 70
7.2.7 Sending Breaks .. 71
7.2.8 Sending Inter-Character Delays ... 71
7.2.9 Summary of Special Transmitter Commands... 71

7.3 Flow Control .. 72
7.3.1 Receiver Flow Control .. 72
7.3.2 Receiver Hardware (Out-of-Band) Flow Control 73
7.3.3 Receiver Software (In-Band) Flow Control... 74
7.3.4 Transmitter Flow Control .. 75
7.3.5 Transmitter Hardware (Out-of-Band) Flow Control 76
7.3.6 Transmitter Software (In-Band) Flow Control... 76

7.4 Modem Signals and General-Purpose I/O .. 78
7.4.1 Generating Service Requests with Modem Pins 80
7.4.2 Using Modem Pins as General-Purpose I/O .. 80

7.5 Testing the CD1865 — Loopback Tests ... 80

8.0 Programming ... 83

8.1 Types of Registers .. 83
8.2 Access Duty Cycle .. 84
8.3 Accessing FIFOs Versus Other Registers .. 84
8.4 Initialization ... 84
8.5 Global Register Initialization.. 86
8.6 Service Request Initialization .. 86
8.7 Prescaler ... 86
8.8 Channel Initialization and Changes... 87

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 5

8.9 Transmitting Data .. 87
8.10 Receiving Data .. 88
8.11 Programming Examples .. 88

8.11.1 Programming the Service Match Registers .. 88
8.11.2 CD1865 Initialization .. 88
8.11.3 Basic I/O Operations .. 90
8.11.4 Interrupt Response Operations .. 90
8.11.5 Polled Mode Operation... 93

9.0 Detailed Register Descriptions... 94

9.1 Register Map Quick Reference ... 94
9.2 Global Registers .. 97

9.2.1 Miscellaneous Registers .. 98
9.2.2 Configuration Registers .. 98
9.2.3 Service Request/Interrupt Control Registers .. 103

9.3 Indexed Indirect Registers... 108
9.3.1 Receive Data Count Register ... 108
9.3.2 Receive Data Register ... 109
9.3.3 Receive Character Status Register .. 110
9.3.4 Transmit Data Register .. 111
9.3.5 End-of-Service Request Register ... 111

9.4 Channel Registers ... 111
9.4.1 Enable Register ... 112
9.4.2 Channel Command Register .. 112
9.4.3 Channel Option Register 1 ... 116
9.4.4 Channel Option Register 2 ... 116
9.4.5 Channel Option Register 3 ... 117
9.4.6 Channel Control Status Register .. 118
9.4.7 Receiver Bit Register.. 119
9.4.8 Receive Time-Out Period Register... 120
9.4.9 Receive Bit Rate Period Registers (High/Low)..................................... 120
9.4.10 Transmit Bit Rate Period Registers (High/Low).................................... 121
9.4.11 Special Character Register 1 ... 121
9.4.12 Special Character Register 2 ... 122
9.4.13 Special Character Register 3 ... 122
9.4.14 Special Character Register 4 ... 123
9.4.15 Modem Change Register ... 123
9.4.16 Modem Change Option Register 1 ... 124
9.4.17 Modem Change Option Register 2 ... 125
9.4.18 Modem Signal Value Register .. 125
9.4.19 Modem Signal Value Request-to-Send Register.................................. 126
9.4.20 Modem Signal Value Data-Terminal-Ready Register 126

10.0 Electrical Specifications .. 127

10.1 Absolute Maximum Ratings... 127
10.2 Recommended Operating Conditions ... 127
10.3 DC Electrical Characteristics ... 127
10.4 Index of Timing Information ... 128
10.5 AC Electrical Characteristics ... 128

10.5.1 Clocked Bus Interface .. 128

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 6 Datasheet

1 Functional Block Diagram .. 9
2 Internal Block Diagram 22
3 Foreground/Background Internal Structure 24
4 Internal Operation Flow Chart 25
5 Internal Service Acknowledge Decision Tree..30
6 Internal Fair-Share Operation]..... 31
7 Receive Timer Operation 34
8 Three-Level Interrupt with Three-Level Acknowledge Example...... 38
9 Three-Level Interrupt with Single-Level Acknowledge Example 39
10 Single-Level Interrupt with Single-Level Acknowledge Example 40
11 Simple Software Polled Interface Example 41
12 Polled Code Sequence42
13 Interrupt Code Sequence 43
14 Internal Block Diagram 46
15 2 Clock Option... 47
16 48
17 Typical Unclocked Bus Interface 53
18 Typical Clocked Bus Interface... ... 54
19 Incorrect VME Interface 56
20 Correct VME Interface.. 57
21 Bit Synchronization in CD1865 58
22 Receive Operation 59
23 No New Data Timer Logic 67
24 Transmitter Operation 69
25 Receiver Flow-Control Logic 73
26 Transmitter Flow-Control Logic 76
27 Local and Remote Loopback Logic ... 82
28 Initialization 85
29 Clocked Bus Interface Reset... 130
30 Clocked Bus Interface Clocks 131
31 Clocked Bus Interface Read Cycle,

Motorola‚-Style Handshake 131
32 Clocked Bus Interface Service Acknowledgment Cycle,

Motorola‚-Style Handshake 132
33 Clocked Bus Interface Write Cycle,

Motorola‚-Style Handshake 133
34 Clocked Bus Interface Read Cycle,

Intel‚-Style Handshake 134
35 Clocked Bus Interface Service Acknowledgment Cycle,

Intel‚-Style Handshake 135
36 Clocked Bus Interface Write Cycle, Intel‚-Style Handshake..................................... 136

10.5.2 Unclocked Bus Interface .. 136

11.0 Package Specifications ... 145

12.0 Ordering Information .. 146

Index ... 147

Figures
sss

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 7

37 Unclocked Bus Interface Read Cycle, Motorola‚-Style Handshake................... 139
38 Unclocked Bus Interface Service Acknowledgment Cycle,

Motorola‚-Style Handshake ... 140
39 Unclocked Bus Interface Write Cycle,

Motorola‚-Style Handshake ... 141
40 Unclocked Bus Interface Read Cycle, Intel‚-Style Handshake 142
41 Unclocked Bus Interface Service Acknowledgment Cycle,

Intel‚-Style Handshake .. 143

42 Unclocked Bus Interface Write Cycle, Intel‚-Style
Handshake144

Tables

1 CD18XX Product Family ... 15
2 Differences Between the CD1865 and CD1864 .. 15
3 State Machine Logic .. 29
4 Service Request Methods ... 36
5 Bit Rate Constants, CLK = 33 MHz ... 49
6 Bit Rate Constants, CLK = 25 MHz ... 49
7 Bit Rate Constants, CLK = 20 MHz ... 50
8 Bit Rate Constants, CLK = 15 MHz ... 50
9 Register Summary... 96
10 Clocked Timings .. 129
11 Unclocked Timings .. 137

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 8 Datasheet

Revision History

Revision Date Description

1.0 May 2001 Initial release.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 9

Figure 1. Functional Block Diagram

RESET*
CS*
DS*
CLK*
R/W*
A[0:6]

INTEL/MOT*
RREQ*
TREQ*
MREQ*
DTACK
DLY

DTACK
*

DB[0:7]
ACKIN*
ACKO
UT*
CLK
OSC1

HOST
BUS

INTERFACE
LOGIC

RISC
PROCESSOR

RAM

FIRMWARE
ROM

SERIAL
INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

SERIAL

INTERFACE

5

5

5

5

5

5

5

5

TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM
TxD
RxD
MODEM

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 10 Datasheet

1.0 Overview

The CD1865 is a cost-effective controller capable of controlling eight full-duplex channels
transferring data at rates up to 115.2 kbps. The advantage of the CD1865 lies in its ability to
efficiently move data from the serial channels to the host. This results in an order-of-magnitude

improvement in system-level throughput and a reduction in overhead on the host CPU.

To increase the overall data throughput of the system, the device relies on a combination of features.
Most important are the buffers for transmit and receive data. Each serial channel has three 8-byte
FIFOs — one each for transmit, receive, and receive exception status. The receive FIFOs have

programmable thresholds to minimize interrupt latency requirements.

The CD1865 is based on a high-performance proprietary RISC processor architecture developed by
Intel specifically for data communication applications. This processor executes all instructions in
one clock cycle, and uses a register-window architecture to ensure zero-overhead context switch for

each type of internal interrupt.

The CD1865 is fabricated in an advanced CMOS process. The device’s high throughput, low-
power consumption, and high-level of integration permit system designs with minimum parts
count, maximum performance, and maximum reliability.

1.1 Theory of Operation

The CD1865 custom RISC processor is assisted by specialized peripheral logic. Serial data
transmission and reception is handled by ‘bit engines’. Each channel has a bit engine for transmit
and another for receive. While each engine handles all bit-level timing, bit-to-character assembly is
done in firmware. Bits are passed to the processor by internal interrupts, over a special bus dedicated
to this purpose. To reduce internal interrupts to zero, special interrupt context hardware points to the
correct register window for every possible context. A unique Global Index register eliminates

address calculations by always pointing to the current channel.

The processor assembles bits into characters, checks parity and other formatting parameters, and
stores the data in the FIFOs as required. FIFOs are maintained as RAM-based structures. Both the

local processor and the host access them by Pointer registers, in effect an Indexed Addressing mode.

The CD1865 communicates with the host by service requests and service acknowledgments. Service
requests can be detected by interrupt lines or by on-device registers. Regardless of the method used,
the CD1865 has features to minimize both the number of requests to be serviced and the time
required to service them. FIFOs help reduce the number of service requests to one every eight
characters. To reduce the time required per request, the CD1865 supplies separate vectors for four
different types of service requests. This reduces the time required by the processor to effect the proper
operation. For instance, there is a unique vector for ‘good data’, so that the host wastes no time
checking status bits or error conditions. If there is an error condition, the CD1865 supplies a unique
vector pointing to the error-handling routine. Other vectors report transmit status and modem signal

change.

Interrupts can be acknowledged either by an Interrupt Acknowledge pin, or by reading an on-
device register. This allows host software maximum flexibility and speed in handling service

requests.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 11

CPU

ADDRESS
DECODE
AND

CONTROL
LOGIC

ADDRESS
DATA

CS*

DS*

R/W

DTACK*

ACKIN*

TxD
RxD
DTR*
DSR*
RTS*
CTS*

CD*

Channel 0

CHANNEL 1

CPU

INTERRUPT
CONTROLLER

CD1865 CHANNEL 2

CHANNEL 3

CHANNEL 4

ACKIN* ACKOUT* ACKIN* ACKOUT* ACKIN* ACKOUT*

INTERRUPT

CONTROLLER

RREQ*
TREQ*

MREQ*

CHANNEL 5

CHANNEL 6

CHANNEL 7

CD1865 CD1865 CD1865

Typical CD1865 Host CPU Interface CD1865 in Daisy-Chain Scheme

Because the CD1865 RISC processor is processing every character sent or received, features such as
automatic flow control and special character recognition are easily implemented. This further
reduces the processing burden on the host system. Both In-Band (Xon, Xoff) and Out-of-Band
(RTS/CTS, DTR) Flow-Control modes are supported. For in-band flow control, the CD1865
automatically starts and stops its transmitter when the remote unit sends flow-control characters.
The CD1865 also makes it easy for the local host to flow-control the remote, by the ‘send special
character’ commands. For out-of-band flow control, the transmitter optionally asserts RTS and
monitor CTS for permission to send; and assert/negate DTR when the Receive FIFO reaches a user-
definable threshold. Together, the in-band and out-of-band features not only allow the data flow to
be controlled in real time with minimum or no host intervention, it also prevents loss of data.

As shown on the previous page, the CD1865 can interface virtually any CPU, with a minimum of
glue logic. Refer to the CD1865 Data Sheet for detailed information on how to interface various
microprocessors. Systems with multiple CD1865s are easily implemented, with no external glue, by
device a daisy-chain scheme. A ‘fair share’ feature ensures equal access for all service requests, both
within one CD1865 and across multiple devices.

FIFO — 24 bytes of FIFO are dedicated to each channel partitioned as 8 bytes for transmitter,
8 bytes for receiver, and 8 bytes for status. The receive FIFO has a user-programmable threshold to
optimize system response and latency. The receive FIFO threshold programming range is from 1–8
characters.

Vectored Interrupt Structure — Three interrupt signals ([R, T, M]REQ*) are used. These signals
may also be read as an on-device register. Each REQ* signal represents one of three interrupt
groups: receive, transmit, and modem signal state changes. Upon servicing by the host, an interrupt
vector is generated by the CD1865 to define the interrupt group to be serviced and which CD1865
generated the interrupt. This allows the host software to enter directly into the proper interrupt
service routine, reducing the amount of interaction between the host and the controller, and
determining the nature of the interrupt.

Good Data Interrupt — If data received is all good, the host is advised of the number of good
data bytes in the FIFO, allowing the host to read data without further status queries until all good
data has been transferred.

Fair-Share Interrupt Scheme — To ensure equal service of all channels, a fair share scheme is
used for each interrupt group. No channel can interrupt for the same condition until all others have a
chance to be serviced for the same interrupt condition.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 12 Datasheet

Note: To support 115.2 kbps, a system clock of 66 MHz is required. System design is simplified in the

CD1865 by providing a choice of crystal or external clock operation, at 1×- or 2×-rated
frequency.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 13

2.0 Conventions

2.1 Abbreviations

Symbol Units of measure

°C degree Celsius

µF microfarad

µs microsecond (1,000 nanoseconds)

Hz hertz (cycle per second)

Kbit kilobit (1,024 bits)

kbps

kbits/second
kilobit (1,000 bits) per second

Kbyte kilobyte (1,024 bytes)

kbytes/second kilobyte (1,000 bytes) per second

kHz kilohertz

kΩ kilohm

Mbyte megabyte (1,048,576 bytes)

MHz megahertz (1,000 kilohertz)

mA milliampere

ms millisecond (1,000 microseconds)

ns nanosecond

pV picovolt

V volt

W watt

The use of ‘tbd’ indicates values that are ‘to be determined’, ‘n/a’ designates ‘not available’, and
‘n/c’ indicates a pin that is a ‘no connect’.

2.2 Acronyms

Acronym Definition

AC alternating current

CMOS complementary metal-oxide semiconductor

DC direct current

DMA direct-memory access

DRAM dynamic random-access memory

FIFO first in/first out

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 14 Datasheet

Acronym Definition (Continued)

HDLC high-level data link control
ISA industry standard architecture
LSB least-significant bit
MSB most-significant bit
PPP point-to-point protocol
MQFP metric quad flat pack
RAM random-access memory
R/W read/write
SDLC synchronous data link control
TTL transistor-transistor logic

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 15

 Table 1. CD18XX Product Family

Features CD180 CD1864 CD1865

Package 84-pin PLCC 100-pin PQFP 100-pin MQFP
System clock 12.5 MHz 25 MHz (×2) 66 MHz (×2)
Maximum bit rates 64 kbps 64 kbps 115.2 kbps
 DTRSEL * - -
Pins

4 modem/IO signals per

channel

5 modem/IO signals per
channel

5 modem/IO signals per
channel

Note: This input (DTRSEL) on the CD180 sets the mode for the DTR*/CD* pins. When DTRSEL is high, the DTR*/CD*

pins implement the DTR* output; when low, the DTR*/CD* pins become CD* inputs.

 The CD1864 and CD1865 have separate DTR and CD pins and so the DTRSEL is eliminated.

Table 2. Differences Between the CD1865 and CD1864

Pin Number

CD1865

Pin Name

CD1864
Pin Name Comments

1 VCC n/c Note 1

16 GND n/c Note 2

37 VCC n/c Note 3

 NOTES:

1. Pin 1 and pin 16 are truly no-connects on the CD1864 device.

2. Pin 37 on the CD1864 is not a true no-connect, and can cause problems if connected to VCC. To make a single board design be

 compatible with either the CD1864 or CD1865, a configuration jumper must be used to allow pin 37 to be a no-connect or a VCC

 connection.

 Note: In January 1995, Intel changed all 100-pin PQFP package types from EIAJ to JEDEC. The CD1865 is

now available in a JEDEC package. Before beginning any new design or converting from CD1864 to CD1865,
please contact Intel for package details.

 Warning: The CD1865 device may have potential latch up problems if used in socket. It is recommended that this

device be surface mounted.

 3.0 Device Selection Considerations

The CD1865 device is an enhanced version of the same product family as the CD180 and CD1864.
The CD1865 is software compatible with both the CD180 and CD1864. If this is a new CD1865
design, please skip this page.

The CD1865 is recommended for any new designs. Please note that to achieve the high data rates,
66-MHz system clock is required. To support data rates of up to 115.2 kbps, the specified system
clock frequency is required. Please refer to the differences in pins between the CD1864 and

CD1865. It is recommended that the 66-MHz, 2×-clock option (oscillator or crystal) is used

wherever possible.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 16 Datasheet

4.0 Pin Information

The CD1865 is available in a 100-pin MQFP (metric quad flat pack device) configuration as shown
below.

4.1 Pin Diagram

VCC

DS*(RD*)

R/W*(WR*)

DTACK*

CS*

RTS[0]*

CTS[0]*

CD[0]*

DTR[0]*

DSR[0]*

RTS[1]*

CTS[1]*

CD[1]*

DTR[1]*

VCC

GND

DSR

[1]*

RTS[

2]*

CTS[

2]*

CD[2]*

DTR[2]*

DSR[2]*

RTS[3]*

CTS[3]*

CD[3]*

DTR[3]*

DSR[3]*

RTS[4]*

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

CD1865

100-Pin MQFP

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

TEST

ACKIN*

DBLCLK

OSC2

OSC1

NO_OSC

RREQ*

TREQ*

MREQ*

TXD[7]

TXD[6]

TXD[5]

TXD[4]

TXD[3]

TXD[2]

TXD[1]

VCC

TXD[0]

RXD[7]

RXD[6]

RXD[5]

RXD[4]

RXD[3]

RXD[2]

RXD[1]

RXD[0]

DSR[7]*

DTR[7]*

CD[7]*

CTS[7]*

NOTE: (*) Denotes an active-low (negative-true) signal.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 17

4.2 Pin Assignments

The following conventions are used in the table below: (*) denotes an active-low signal; I = input; I/O =
input/output; O = output; OD = open drain; a (:) indicates decending pin numbers; a (–) indicates ascending
pin numbers.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 18 Datasheet

5.0 Functional Description

5.1 Introduction

The CD1865 I/O coprocessor controls eight full-duplex channels that transfer data at rates up to
115.2 kbps. The CD1865 efficiently moves data between the serial channels and the host, resulting in a great
improvement in system-level throughput and a reduction in overhead on the host CPU. This improvement is obtained by
reducing the number of service requests (interrupts) the host must respond to and reducing the complexity and time
required to handle each service request.

The CD1865 relies on a combination of features to reduce the number and complexity of service requests. Most
important are the buffers for transmit and receive data. Each serial channel has three
8-byte FIFOs — one each for transmit, receive, and receive-exception status. The Receive FIFOs have programmable

thresholds to minimize interrupt latency requirements. The vectored service requests and the Good Data interrupt
allow the host system to immediately transfer data upon beginning processing of a service request, without tedious
checking of flags and error conditions.

The CD1865 is based on a high-performance, proprietary RISC processor architecture developed by Intel specifically for
data communications applications. The CD1865 processor executes all instructions in one-clock cycle, and it uses a
register window architecture to ensure zero-overhead context switch for each type of internal interrupt. The instruction
set of this processor is optimized for bit-oriented tasks that combined with instantaneous response to sending or receiving
one bit, allow highly efficient processing of characters. All firmware for the CD1865 processor is contained in an on-
device ROM, and requires no user programming.

The CD1865 processor is assisted in its task by specialized peripheral logic. Serial data transmission and reception is
handled by ‘bit engines’. Each channel has a bit engine for transmitting and another for receiving. While each engine
handles all bit-level timing, bit-to- character assembly is done in firmware. Bits are passed to the CD1865 processor by
internal interrupts over a special bus dedicated to this purpose. Special internal-interrupt context hardware reduces
overhead on internal interrupts to zero by pointing to the correct register window for every possible context, and a unique
Global Index register eliminates address calculations by always pointing to the current channel. External service requests
to the host system are also hardware assisted. There is a queue for each of the three classes of external service requests,
and the request/ acknowledgment mechanism is entirely in hardware to minimize response time.

The CD1865 processor assembles bits into characters, checks parity and formatting parameters, and stores the data in the
FIFOs as required. FIFOs are maintained as RAM-based structures, and both the local CD1865 processor and the host
access them by Pointer registers by an Indexed Addressing mode.

The CD1865 communicates with the host by service requests and service acknowledgments. Service requests can be
handled either as interrupts or by polling. Regardless of the method used, the CD1865 has features to minimize both the
number of requests to be serviced and the time required to service them. The number of service requests is reduced by
the FIFOs since a service request is required only every eight characters. To reduce the time required per request, the
CD1865 supplies separate vectors for four different types of service requests. This reduces the time required by the host
CPU to determine what action to take. For example, there is a unique vector for Good Data so that the host wastes no
time checking status bits for error conditions. If there is an error condition, the CD1865 supplies a unique vector pointing
to the error-handling routine. Other vectors report transmit status and modem signal change.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 19

Service requests to the host system are implemented on the CD1865 by three hardware service request state machines. Each
machine has the ability to ‘queue-up’ multiple requests. The state machines are designed to offer the fastest response
possible. Whenever the CD1865 processor determines that a condition needs a service request, it queues the request with the
appropriate state machine. The state machine posts the external request, monitors acknowledgment cycles from the host, and
informs the CD1865 processor when a valid service acknowledgment has been completely serviced. This allows the
CD1865 to correctly maintain the internal context for processing the channel being serviced.

Because the CD1865 processor processes every character sent or received, features such as Automatic Flow Control and
Special Character Recognition are easily implemented. This reduces the processing burden on the host system. Both In-
Band (Xon, Xoff) and Out-of-Band (RTS/CTS, DTR/DSR) Flow Control modes are supported. For In-Band Flow Control,
the CD1865 automatically starts and stops its transmitter when the remote unit sends flow-control characters. The CD1865
makes it easy for the local host to flow-control the remote by the ‘Send Special Character’ commands. For Out-of-Band
Flow Control, the transmitter optionally asserts RTS and monitors CTS for permission to send, and assert/negate DTR when
the Receive FIFO reaches a user-definable threshold. DSR can be used to gate the receiver on and off. Together, the In-Band
and Out-of-Band features allow the data flow to be controlled in realtime with minimum or no host intervention, and this also
prevents loss of data.

Systems with multiple CD1865s are easily implemented, with no external glue, by a daisy-chain scheme. A fair-share
feature ensures equal access for all service requests, both within one CD1865 and across multiple devices. Alternately,
multiple CD1865s can be operated in parallel as independent devices.

Serial channels on the CD1865 are entirely independent of one another. Any channel can be programmed to a combination
of features regardless of the state of other channels. Bit-rate generators are programmed by loading a divisor value, so the
transmitters and receivers can each operate at any standard or non-standard data rate.

The CD1865 can detect the received line-break condition, send break characters of any length, and transmit delays. This is
done by transmit commands embedded in the Transmit Data Stream. The CD1865 can also be programmed to detect user-
defined special characters and generate a special service request to the host. Parity checking is performed automatically, but
can be overridden by the host to force parity errors for test purposes. Character length and Stop bit length are also
programmable per-channel.

Modem pins on the CD1865 are general-purpose, that is, they are not hard-wired into the UART functions. If modem pins
are not needed to interface to actual modems, they can be used as general-purpose I/O pins. In either case they are readable
and writable directly by the host system. In addition, the CD1865 can be programmed to monitor levels on modem input
pins and generate service requests to the host upon detecting a specified change.

The CD1865 is fabricated in an advanced CMOS process. Its high throughput, low-power consumption, and high level of
integration permits system designs with minimum parts count, maximum performance, and greater reliability.

There is a significant difference between the CD1865 and conventional dumb UARTs; the CD1865 is more efficient and
intelligent, even when operating in a polled environment. Systems built with the CD1865 interface between the host and the
I/O device at a higher level than systems built with conventional UARTs. For example, with a dumb UART, the host must
test each channel for presence of data, a process that is time-consuming. With the CD1865, the host queries the entire

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 20 Datasheet

serial I/O subsystem for the presence of data. If data is present, the CD1865 determines which channel it is on, and
whether it is good or erroneous. Thus, using the CD1865, the host-peripheral interface is easier to implement, faster, and
more efficient.

5.2 Internal Operation

The internal architecture of the CD1865 is shown in Figure 2. The foundation of the design is a custom-designed CPU
that Intel has developed especially for this application. This CPU is optimized for bit-oriented tasks associated with
UART functions, and it has a set of registers for each channel, arranged in a register window architecture. These registers
and the ALU are eight bits wide. The CD1865 processor has a 16-bit instruction word that it retrieves from an on-device
ROM. Every instruction is one-word long and executed in one-clock cycle.

Whenever an internal interrupt occurs (from a bit engine), the CD1865 processor automatically switches context to that
channel’s block of registers. No time is lost in saving any machine state. The CD1865 processor executes the instructions
necessary to handle that bit (typically three to six instructions) and then returns to the context it was in prior to the
internal interrupt. All internal interrupts are at the same priority level; the interrupt handler block ensures fair-share
access across channels.

Each channel’s serial interface logic consists of a receive-bit engine, a transmit-bit engine, a receive-baud-rate generator,
a transmit-baud-rate generator, and a timer. The receive-bit engine samples the state of the RxD pin at the time indicated
by the receive-baud-rate generator, and it reports this value to the CD1865 processor as an interrupt. The transmit-bit
engine works in a similar manner. At the baud rate tick, it outputs the next bit and generates an interrupt to the CD1865
processor requesting the following bit.

The baud-rate generators are 16-bit dividers that operate from a master clock, which is the system clock divided by 16.
All baud-rate generators are independent, so a channel can send and receive at any speed. In addition to the baud-rate
generators, there are two channel timers for each channel. One is an 8-bit divider, operating off the master prescaler
timer tick. This timer is used to time-out partially full FIFOs to avoid ‘stale’ data. The other is used to time embedded
delays in the transmit data stream.

All eight channels are continuously scanned by internal logic that generates interrupts to the CD1865 processor in a ‘fair’

manner. This fair-share interrupt feature is the same as the mechanism used to share service requests across multiple

devices. Whenever two or more channels are contending for interrupt service, the channel that is serviced first does not

assert again until all other currently pending channels are serviced. This prevents a fast, 64-kbps channel from

demanding service from a slow 1200-bps channel, yet it allows the faster channel the additional service it needs to

support its higher speed. This allows more overall throughput than a ‘round- robin’ or an ‘equal-access’ method would

provide

Service requests for the host are handled by fast, dedicated logic on each of the three levels provided. Whenever the
CD1865 processor detects a condition requiring external-host service, it queues the request with the service-request
machine for that level. This machine asserts the External Request pin, and it monitors for a service acknowledgment of
the same level. When a service acknowledgment is sensed, the machine automatically provides the vector to the host and
sets up the internal context of the CD1865 for service. Upon completion of the service, the machine restores the normal
context. The queue for service requests is two deep, so in a busy system there can be another request immediately
pending when the first one is completed. This method avoids any delay between requests, and improves overall
efficiency.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 21

Modem I/O signals are implemented as ‘conventional’ input-output circuits, readable, and writable by either the on-
device or the host CPU. This allows maximum flexibility in using these signals either in the conventional way, or for any
other I/O function required. When the CD1865 processor is using these pins to implement flow-control functions, it reads
them under software control and implements the function that way. There is no direct hardware association between the
modem pins and the serial I/O hardware.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 22 Datasheet

Figure 2. Internal Block Diagram

RECEIVE BIT

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RXDATA

TXDATA

RREQ*
TREQ*
MREQ*

ACKOUT*

ACKIN*
SERVICE
REQUEST

LOGIC

RECEIVE
SERVICE
REQUEST
QUEUE

TRANSMIT
SERVICE
REQUEST
QUEUE

ROM

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RXDATA

TXDATA

RXDATA

TXDATA

ADR[0–6]
DATA[1–7]

CS*
DS*

R/W
DTA
CK*

INTEL/MOT*

RESET*
CLK

DBLCLK
NO_OSC
OSC1

OSC2

BUS
INTERFACE

MODEM
SERVICE
REQUEST
QUEUE

CPU

RAM

PER
CHANNEL
TIMER

RTS*
CTS*
DTR*
DSR*
CD*

INTERRUPT
HANDLER

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

RXDATA

TXDATA

RXDATA

TXDATA

RXDATA

TXDATA

RXDATA (MODEM

CONTROL) 5 LINES
5 LINES
5 LINES
5 LINES
5 LINES
5 LINES

5 LINES

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

TXDATA

RXDATA

TXDATA

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 23

The CD1865 workload can be divided into two categories:

• Bit-to-character conversion (and vice versa) — the ‘traditional’ UART function

• Character-level processing such as flow control, FIFO management, and host interface functions

The CD1865 internal processor handles all these tasks in firmware. A foreground/background scheme is used:
foreground for internal bit-engine interrupts and background for everything else. This internal structure represented in
Figure 3 on page 24, shows how the foreground communicates with the background. Foreground code handles bit-to-
character assembly for receive, and character-to-bit disassembly for transmit. In either case a Holding register, together
with a Full/Empty bit, acts as the ‘gateway’ between the interrupt-driven foreground and the polling-loop background
code.

The background code executes the polling loop as shown in Figure 4. After power-on reset, the software runs
continuously in an inner and an outer loop. Lower-priority tasks are handled in the outer loop, and higher-priority tasks
are handled in the inner loop. The highest-priority tasks are bit events that are handled by foreground (that is, interrupt-
driven) code.

The inner loop executes eight times as often as the outer loop. It checks each channel’s Full/Empty bits to sense if another
character needs to be moved. It first checks receive, and if there is a character to be moved, it is moved and execution
moves on to the next channel. If receive data does not need processing, then transmit is checked. This mechanism gives a
slightly higher priority to receive than to transmit, and is favorable because missing a receive character is a fatal error
and being late in transmitting one is not an error. (The effect of this can be observed by programming the CD1865 for
higher-than-rated serial baud rates and providing a source of receive traffic with virtually 100-percent loading. As the
CD1865 is heavily loaded, it leaves short gaps between transmit characters because the firmware is following the
‘receive’ path through the code. Refer to Section 6.2.5 for details on maximum performance and maximum line speed).

After eight passes through the inner loop (for example, checking all eight channels for data), one pass is made through
the outer loop. This pass checks one channel for host commands (such as ‘Send Special Character’), timer functions,
and a condition that requires posting an external service request (for example, Receive FIFO full, Transmit FIFO empty,
modem signal change, and so on). If required, the firmware posts the service request within the queue of the
appropriate service- request logic. It then continues normal operation, until the host responds to the service request.
After a single pass through the outer loop, eight passes through the inner loop are again made.

In most cases the CD1865 checks the appropriate bit in RAM to determine which options are enabled and then modifies
its processing accordingly. Some control bits must be interpreted and moved by the CD1865 firmware from their location
in Option Bit registers to other locations in the device. Therefore, the host must notify the CD1865 when these bits are
modified. Then, the CD1865 alters the channel as commanded. For details on channel command functions, refer to
Section 7.2.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 24 Datasheet

Figure 3. Foreground/Background Internal Structure

RECEIVE DATA COUNT REGISTER

RECEIVER
FIFO

RECEIVE
STATUS
FIFO

FULL/

BACKGROUND CODE:

H.R.-TO-FIFO TRANSFER, FLOW

CONTROL, OTHER FEATURES

(POLLING LOOP)

RECEIVER HOLDING REGISTER
EMPTY
BIT

RECEIVER SHIFT REGISTER
RECEIVER

FOREGROUND CODE:
BIT ASSEMBLY,

S.R.-TO-H.R. TRANSFER

(INTERRUPT-DRIVEN)

DTR
OUT

DSR
IN

TRANSMITTER
FIFO

TRANSMITTER HOLDING REGISTER

BACKGROUND CODE:

FIFO-TO-H.R. TRANSFER, FLOW

CONTROL, OTHER FEATURES

(POLLING LOOP)

FULL /
EMPTY
BIT

TRANMSITTER SHIFT REGISTER

TRANSMITTER

FOREGROUND CODE:
BIT DISASSEMBLY, H.R.-
TO-S.R. TRANSFER

(INTERRUPT-DRIVEN) RTS
OUT

CTS
IN

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 25

Figure 4. Internal Operation Flow Chart

POWER-ON
RESET INITIALIZATION

FOR OUTER_LOOP
I = 1 TO 8

HOST COMMAND
PROCESSING

TIMER FUNCTIONS

GLOBAL
(SOFTWARE)

RESET

FOR INNER_LOOP
J = 1 TO 8

IF
RCV_HLD_REG

= FULL

Y PROCESS RECEIVE CHAR.; CHECK
ALL SPECIAL FEATURES; PLACE

IN FIFO

N

IF
XMT_HLD_REG

= EMPTY

Y PROCESS TRANSMIT CHAR.;
CHECK ALL SPECIAL FEATURES;

FETCH FROM FIFO

N

PROCESS RECEIVE
INTERRUPT

RECEIVE SERVICE
REQUEST SCANNING

TRANSMIT SERVICE
REQUEST SCANNING

MODEM SERVICE
REQUEST SCANNING

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 26 Datasheet

5.3 Service Request and Interrupt Operation

The CD1865 enhances design efficiency, because it is an intelligent device that more closely resembles an add-in
controller board than a mere collection of TTL. Conventional UARTs are basically passive, ‘dumb’ logic. For example,
when polling a device for channels requiring service, each channel is not individually tested. Because of this, certain
restrictions are placed on when and how FIFOs are accessed. The CD1865 processor must determine what the host is
doing, and when to manage the queue of events correctly and efficiently.

Interrupt-Driven Versus Polled

Choosing the software interface, interrupt-driven versus polled, is critical to overall system performance. This choice
also affects how the software is written. In hardware implementation, a programmer has a choice of Mixed mode, that is,
when to poll versus when to be interrupt-driven. Mixed-mode operation allows a programmer to optimize the efficiency
of the system according to changing needs. The advantages of each method are discussed in Section 5.5.

5.3.1 Theory of Operation

The CD1865 has three independent service request levels, one for each of the three categories — Receive, Transmit,
and Modem signal change. The priority of these lines is not fixed, but can be determined in one of the following three
ways:

• It can be set within the CD1865 by the AutoPriority Option bits.

• A system designer can assign priorities by the manner in which the three service request lines are connected to the
host interrupt controller.

• Under software control, the host system can define and redefine the order of service requests.

The Service Request interface to the host is implemented with five signals — *, *, *, ACKIN*, and ACKOUT*. *, *, and
* are asserted when a service request is pending; ACKIN* is asserted during service-acknowledgment cycles; and
ACKOUT* is used in multiple CD1865 designs to share service requests and daisy-chain acknowledgments.

Whenever the CD1865 processor determines that one or more channels need service from the host, it loads the
appropriate service-request state machine with the information about the type of request. The service-request state
machine for that level then asserts its request signal. Note that all three request signals can be active at the same time. At
this point, the CD1865 has not determined which request should be handled first — it simply asserts any and all lines, as
required by the status of various channels. (This is true even if the AutoPri Option is enabled; AutoPri takes effect when
a service request is acknowledged, and at that time the CD1865 determines which is the most important request.)

The host, after noticing that one or more of the three service request pins are active — either because the host is
interrupted or it polled an external or internal CD1865 status register — decides which of the requests (if more than one is
active) it services first. The host begins the service operation by issuing a Service Acknowledge cycle. The purpose of
this cycle is to cause the CD1865 to set up its internal state for that type of request. (Note that if AutoPri is set, it is not
necessary for the host determine which level of service request to acknowledge; it simply acknowledges the CD1865
request and the CD1865 returns the vector for the highest-priority active request.)

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 27

If AutoPri is not being used, the CD1865 needs to be informed which one of the three possible pending requests the host
wants to acknowledge. There are two different ways CD1865 can be informed of this — hardware and software.

The hardware method is based on the value in the address bus. The CD1865 determines the type of request being
acknowledged by the value placed in the address bus during the acknowledge cycle. This is the method used by

Motorola-family processors. The host places the level of interrupt being serviced on the low-order address bits during
an interrupt acknowledgment cycle. When the host performs a Service Acknowledge cycle, the CD1865 compares the
value on the address bus with the three unique values stored in three internal registers — the . These values are set by the
user at system initialization. A match occurs on only one of these registers, and this informs the CD1865 of the type of
request being acknowledged.

In most circumstances the address bus should not have a value that does not match one of the three values during an
acknowledgment cycle. This causes the CD1865 to not recognize that any bus cycle is occurring, and it does not assert
DTACK*, or terminate the cycle, or take any other action. Doing this does not affect the CD1865, but the system must
have some other provision to terminate the bus cycle. If, for example, the CD1865 shares an interrupt level with another
device, different values on the address bus should be used to control responses to an acknowledgment, but the bus cycle
should terminate in a usable way.

Service acknowledgments can also be performed by software. The host simply reads one of three Request Acknowledge
registers, and the CD1865 performs as if a hardware service acknowledge cycle is executed.

Regardless of the method of acknowledgment used, within the CD1865, each service request state machine makes the
following determination: if it has an internal service request pending, and there is a service acknowledge of the same
type, it asserts its internal-acknowledge-accepted signal back to the Service Request Controller logic, negates the Service
Request Output pin, and holds its acknowledge-out daisy chain in a negated state. It also drives the value in the Global
Vector register (GVR) onto the data bus, for the host to read as part of the Service Acknowledge cycle. The GVR value
placed on the bus during the Service Acknowledge cycle serves two purposes. The least-significant three bits of GVR
indicate which of the four types of service requests are occurring. The upper-five bits are user-defined and serve to
identify, in daisy-chained CD1865 systems, which of the multiple CD1865s is active.

If the service request state machine does not have a service request pending, and there is a software acknowledgment or
address bus match, it passes the service acknowledgment down the chain by asserting ACKOUT*. If there is no match,
the state machine remains idle.

If a service request is pending and the Receive Service Request is to be handled, the CD1865 is notified because the
three have different values in them; therefore, only one match (receive service, in this case) occurred. The internal grant
from the service request state machine causes the receive service type code and active channel number (previously stored
at the time the request is posted by the CD1865 processor) to be pushed onto the service request stack. This
automatically causes the FIFO pointers to be set up for the active channel, with no host intervention.

The host, at this point, has all the information needed to handle the service request. It determines the exact type of
service being requested (Transmit, Receive Good Data, Receive Exception, or Modem signal change) and which of the
multiple CD1865s is requesting service. It gets the channel number by reading the Global Channel register (GCR) and
then proceeds to service the request. At the completion of the service, the host performs a dummy write to the CD1865
End Of register (), that causes the CD1865 to exit its internal service request state by popping the service

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 28 Datasheet

request stack. At this time the CD1865 is ready to be serviced on another of its outstanding requests. If another request
of the same level is pending, two clock periods after the write to are required for the CD1865 to reassert the request line.

Because the CD1865 has a service request stack, it can support nested-service requests. For example, the host can be in
middle of a Transmit Service Request, detect that Receive Service Request has asserted, process the Receive Service
Request, and after exiting the receive service routine, resume the Transmit Service Request. The CD1865 stack is three
deep, so all three types (one of each) can be nested if required. The current service request context (for example, the
stack) is readable in the Service Request Status register.

The Global Channel registers (GCR) are actually three registers that provide the number of the channel requesting
service. Reading any of these registers causes the CD1865 to mask in three bits, specifying the channel number of the
currently active channel. Normally these registers are read by the host when it is handling a service request. In this case,
the three bits are the number of the channel requesting service. If any of the three GCR registers are read when the
CD1865 is not in a service-request context, the three bits are the current value in the CAR. The current channel number
is masked into the contents of bits 4:2 of this register by the CD1865 when it is read by the host. The actual contents of
the register are not modified.

These three registers are provided as a convenience to the user. In most applications, the user only uses one of these
locations, and set the register to some arbitrary value. However, it may be useful to record information about the state of
the CD1865 (or the software driving it) that is associated with each of the three service-request types. In this case, the
user can store whatever information is required in the unused bits. Then, when entering a service routine, the software can
check these bits to find what state they were left in, and this could be used as a ‘sub-vector’.

5.3.2 Internal Implementation of the Service Request Logic

As discussed above, the heart of each service request level is an asynchronous state machine. This state machine has
three inputs:

• MATCH from the Priority Interrupt Level register comparator,

• ACKIN* from the host system, and

• INTERNAL_REQUEST from the CD1865.

Note: Software acknowledgments (reads from the Service Request Acknowledge registers), in effect, force the

MATCH value true for their respective level.

It also has three outputs:

• Svc_Req to the host system,

• INTERNAL_GRANT to the CD1865, and

• ACKOUT*, which is combined with the other two ACKOUT* signals to provide ACKOUT*
to the next CD1865 in the daisy chain.

Figure 5 on page 30 shows logic implemented by the state machine, which is described in Table 3

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 29

Table 3. State Machine Logic

State Name Output Condition Comments

IDLE

IF (INTERNAL_REQUEST = 1)

ELSE IF (ACKIN* = 1 & MATCH =1)

ELSE

REQ_ACTIVE

IF (ACKIN* = 1 & MATCH =1)

IF (ACKIN* = 1 & MATCH =0)

ELSE

PASS_ACK

IF (ACKIN* = 0)

ELSE

KEEP_ACK

IF (ACKIN* = 0)

ELSE

all outputs inactive
GoTo REQ_ACTIVE

GoTo PASS_ACK
Stay at IDLE

GoTo KEEP_ACK

Stay at REQ_ACTIVE

Stay at REQ_ACTIVE

GoTo IDLE

Stay at PASS_ACK

GoTo IDLE

Stay at KEEP_ACK

; normal ‘resting’ state

; pass this acknowledge

; wait here

request asserted

; keep this acknowledge

; wait here, ACK is for some other level (†)

; wait here

ACKOUT* asserted

; return when ACKIN* is gone

; wait here while ACKIN* active

INTERNAL_GRANT asserted

; return when ACKIN* is gone

; wait here while ACKIN* active

NOTE: The (†) denotes the point at which, if there is no match, the CD1865 determines not to pass the ACK
down the daisy chain. It does this for two reasons: first, it is unacceptable to have the ACKOUT* ‘glitch’
low; and second, the state machine should be as fast as possible. When the state machine senses an
ACKIN* and match is not valid, it cannot conclude that it should assert ACKOUT*; the ACKIN* may be for
one of the other two service requests levels. It could wait for the results of the other two MATCH
comparators; however, this complicates, and therefore slows down, the response of the state machine.

The reason this complication causes delay is (to implement the logical function ‘assert ACKOUT* if no
match’) it must determine how long to wait before declaring a no-match condition. To implement this
delay function, a synchronous state machine is required, which at a 15-MHz clock, means a delay of
several hundred nanoseconds from ACKIN* to ACKOUT*, instead of the 65 ns currently specified.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 30 Datasheet

Figure 5. Internal Service Acknowledge Decision Tree

IDLE STATE (1)
ALL OUTPUTS INACTIVE

IF
INTERNAL_REQUEST

= ACTIVE

TRUE REQUEST_ACTIVE STATE (2)
ASSERT REQUEST

FALSE IF
IACKIN* = ACTIVE

AND

MATCH = YES

TRUE KEEP_ACK STATE (4)
ASSERT INTERNAL_GRANT

FALSE

IF
IACKIN* = ACTIVE

AND
MATCH = NO

TRUE

IF

IACKIN* = INACTIVE

FALSE

FALSE

(This block is redundant. It is placed
here to emphasize that if there is no

match, nothing happens.)

TRUE

IF
IACKIN* = ACTIVE

AND
MATCH = YES

TRUE
PASS_ACK STATE (3)
ASSERT IACKOUT*

FALSE

IF

IACKIN* = INACTIVE

FALSE

TRUE

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 31

5.3.3 Priorities and Fair Share

The CD1865 implements a fair-share mechanism to ensure that all channels receive equal service, without any ‘data
starvation’. Fair share works automatically among the channels in one device and across multiple devices.

Figure 6 on page 31 shows a fair-share operational block diagram. On each of the three service request lines, the CD1865
monitors both the internal and external value of the line. (The external value can differ because, in multiple CD1865
applications, it can be driven by other CD1865s.) At the end of a service acknowledgment bus cycle, the CD1865 checks
the state of both request values. If they are different, the CD1865 determines that there is another part also driving the
request line, and it does not reassert its own request line until the external request has gone inactive. This inactive level
means every other CD1865 with a pending request is serviced; therefore, it is now okay to reassert requests without
controlling host bandwidth.

Figure 6. Internal Fair-Share Operation

5.4 Types of Service Requests

The categories of service requests that a CD1865 can generate are explained below. Each channel’s transmitter, receiver,
and modem pins require service from the host occasionally; however, each category of service request conditions can
tolerate different latencies in being serviced. Conditions for service requests fall into three basic categories:

• Data is received from the remote device and needs to be transferred to the host.

INTERNAL REQUEST EXTERNAL REQUEST (I/O PIN)

TO CD1865

INTERNAL REQUEST

LOGIC
OK TO ASSERT

S Q

LATCH

R

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 32 Datasheet

• Data from the host can be given to the Transmitter FIFO, which is now empty.

• A modem signal changes state.

Three separate service request levels are provided to support the following three categories:

Source Pin Name

Reuest Match

Request Name

Receive data *
Transmit data *
Modem signal change *

5.4.1 Receive Service Requests

The Receive Service Request is unique because it has two subtypes; that is, it is capable of returning one of the two
different vectors during a service request acknowledge cycle. The two sub-types are — ‘Receive Good Data’ and
‘Receive Exception’. The reason there are two types within one category of service request is that, while Good Data and
Exceptions require different handling, they are both of equal priority, and need to be serviced in the order they are
received. For example, suppose two good characters are received, then an exception character, and then another good
character is received. There must be a service request for the first 2 bytes of Good Data, then for the Exception, and then
for more Good Data. If Exception Service Request is at a different level, the exception character is processed either
before or after the Good Data, and not in sequence as it should be. This method also allows the Receive Good Data-
handling routine in the host to be very fast and efficient, since it only has to move ‘N’ bytes to a buffer. All special-case
conditions can be put in a separate handler, where they do not slow down normal data transfers.

Exception characters are characters with errors or that match the defined special characters, line breaks, and certain
time-out conditions.

Data must not be read from the Receive FIFO or the Receive Status FIFO except when the CD1865
is within the context of a Receive Data Service Request.

5.4.1.1 Receive Good

A Receive Good Data Service Request is asserted for any of the following three conditions:

1. RxFIFO threshold reached, and the FIFO contains Good Data.

2. RxFIFO threshold not reached, but the FIFO contains Good Data, and the Receive Data Timer times-out.

3. RxFIFO threshold not reached, but the FIFO contains Good Data, and the newly arrived data contains an exception
condition.

When any of these conditions occur, the modified service request vector indicates to the host that the service request is
for Good Data. The CD1865 continues to add bytes to the FIFO, and it increments the Count register for each good byte
added, and this allows for optimally efficient use of the FIFO.

It is not necessary to accept any or all of the Good Data that is available when a Good Data Interrupt is received. If a
host buffer is too full to accept 8 bytes, a smaller number (even 0) can be read, the service request context left, and the
host buffer handled first. The CD1865 again generates another Good Data Service Request when any of the three
conditions listed above are met.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 33

If the condition that caused the request in the first place remains true, the CD1865 quickly generates another service
request. If no data is read, this is always the case. If some, but not all, of the available data is read, Conditions 1 and 2
are not true, but Condition 3 may be true if an exception condition is the cause of the Good Data Interrupt. If this
becomes a problem, one solution is to temporarily disable receiving interrupts on that channel. To avoid FIFO overflow,
do not disable the channel for very long.

5.4.1.2 Receive Exception

Unusual or exception conditions are reported to the host one character at a time through the Receive Exception Service
Request. As with normal receive processing, the host determines the requesting channel by reading the GCR. It can then
determine the specific exception(s) by reading the Receive Character Status register.

Exception conditions are generated for parity errors, framing errors, FIFO overrun, special character recognition, break
detect, and for a special feature called the ‘No New Data Timer’ (NNDT).

NNDT is a receive timer option to generate a service request for the first receive data time-out following the transfer of
all data from the FIFO to the host. It is often useful, when managing relatively large I/O buffers, for an I/O processor to
determine that ‘no data has arrived lately’. This event is used to transfer the contents of the local buffer that has been
storing data from the CD1865 FIFO for host-system processing.

This service request is a receive exception sub-type, and can be used to signal that it is time to transfer the buffer. This
feature can be enabled or disabled by controlling the NNDT bit in the Service Request Enable register. As shown in
Figure 7, every time a received character is loaded into the FIFO, the timer is restarted. If the timer times-out, the
CD1865 checks if there is any data in the FIFO. If there is, a Good Data Service Request is posted to avoid ‘stale data’.
If there is no data in the FIFO, the CD1865 checks that NNDT is enabled and ‘armed’. Arming occurs when the last
character is transferred out of the FIFO to the host. If NNDT is on and armed, a Receive Exception Service Request is
posted to inform the host of this event. Note that the NNDT is not armed if the last character removed from the FIFO is
an exception character.

Every Receive Exception is a unique, one-character event. The Receive Data Count register has no meaning, unlike the
Receive Good Data case, the Status byte in the receive exception handling routine must be read. The Receive Data
Count register and the associated data character is discarded by the CD1865 at the end of the service routine. The Status
byte must be read before reading the Data byte. Once the Data register is read, the Status byte is no longer available.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 34 Datasheet

Figure 7. Receive Timer Operation

BACKGROUND SCANNING
DETECTS NEW CHARACTER

ARRIVED

...FROM OTHER
BACKGROUND

PROCESSING...

PUT CHARACTER IN FIFO;
RELOAD TIMER N

TIMER

= 0

?

RESUME BACKGROUND
SCANNING LOOP...

IS

Y

FIFO
EMPTY

?

Y

N

POST RECEIVE GOOD
DATA SERVICE REQUEST

NO NEW DATA
TIMEOUT FEATURE

ENABLED

?

N

Y

NNDT
INTERNAL FLAG

’ARMED’

?

N

Y

CLEAR NNDT
INTERNAL FLAG

POST RECEIVE EXCEPTION
SERVICE REQUEST

RESUME BACKGROUND
SCANNING LOOP...

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 35

5.4.2 Transmit Service Requests

Each transmitter contains 8 bytes of Transmit FIFO in addition to the Transmit Holding register and the Transmit Shift
register. As data is being transmitted, the FIFO status is being monitored by the CD1865. A service request is invoked for
one of the following conditions:

• Transmit FIFO Empty — When the Transmit FIFO is empty, there is still one character in the Transmit Holding
register and one character in the Transmit Shift register. The host has two character times to respond to this request
without causing a gap in the Transmit Data Stream.

• Transmitter Empty — The Transmit FIFO, Transmit Holding register, and the Transmit Shift registers are now
empty. This signifies that all characters written to the FIFO are completely transmitted.

The host can select which one of these causes a Transmit Service Request, and it is used by programming the options in
the Service Request Enable register (SRER).

Data must not be put into the Transmit FIFO at any time other than when the CD1865 is in a Transmit Service Request
context for that channel. During a transmit service, characters (up to eight) are placed into the FIFO by the Transmit
Data register (TDR).

5.4.3 Modem Signal Change Service Requests

The CD1865 can be programmed to assert a service request when a channel’s modem input signals has changed states.
The change-detect options are programmed in the Modem Change Option registers. Individual modem pin service
requests are enabled by setting the corresponding bits in the Service Request Enable register.

The host must read the Modem Change register during a modem change service to determine which modem signal
changes were detected. This is indicated by a ‘1’ in the appropriate bit location. The Modem Change register must be
reset to a ‘0’ by the host before exiting the service request because the CD1865 does not do this. Refer to Section 7.4 for
more details.

5.4.3.1 Using Modem Pins as Input/Output

The pins labelled as modem pins are general-purpose I/O pins that can be controlled by either the CD1865 processor or
the host system. There is no direct, hardwired connection from any modem pin directly to a transmitter or a receiver.
This means that these pins can be used for general- purpose I/O if they are not needed for modem-control purposes. See
Section 7.4 for more details.

5.5 Implementing Service Requests

The CD1865 is designed to easily interface with any processor, yet be efficient and flexible enough to provide maximum
throughput. The CD1865 generates service requests and waits for acknowledgments of these from the host. However,
service requests can be implemented in either hardware or software; likewise, acknowledgments can be affected either
way to offer maximum advantages to the system designer and programmer. This interfacing can be grouped as various
steps.

Service requests must be ‘noticed’ by the host system before they can be acted on, and this can be done the following
three ways:

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 36 Datasheet

1. Provide three levels of interrupt support, with three separate levels and three separate vectors. This is well-suited to

Motorola 680X0 processors.

2. Provide a single level of interrupt support; this is an effective method when using 8-bit processors such as the
Z-80 and many Intel

microprocessors.

3. Poll the device directly in software.

Once the host has ‘noticed’ the service request, it has the following two choices for acknowledging the request and
beginning to service it:

• Acknowledge the request by a hardware-based service acknowledgment, as is typically done in interrupt-driven
systems.

• Acknowledge the request in software by reading from a register in the CD1865.

Table 4. Service Request Methods

Thus, there are six theoretically possible options for interfacing the CD1865 to the host system. Two of the methods (2a
and 3a) are not practical to implement without external hardware, and offer no performance advantage. Each of the other
four methods has advantages and drawbacks depending on the type of host CPU being used and whether or not that host
CPU supports more than one CD1865. The four methods used are listed in Table 4.

• This method is called ‘Full Interrupt – Type A’. The system is fully interrupt driven with acknowledgments in
hardware. It requires a host with at least three interrupt priority levels available and the ability to acknowledge on
multiple levels. This is the technique used by Motorola 680X0 processors. It is the most efficient method when the
host CPU has a relatively fast interrupt context switch time and when the host CPU has duties other than driving the
CD1865s.

• This method is called ‘Full Interrupt – Type B’. It still has three levels of interrupt, but provides a single
acknowledgment level. It is commonly used in Intel-type processor systems where there is an 8259A interrupt
controller. The 8259A receives the three levels of interrupt, but it provides its own vector to the host rather than that
of the CD1865s. Then the host acknowledges the CD1865s Service Request by reading the Vector register.

• This method is called ‘Single Interrupt’, and is best-suited to systems having only a single interrupt input, such as
most 8-bit microprocessors. After the host receives its interrupt and is entering its interrupt service routine, it reads
the CD1865 to evaluate which of the three types of service requests is responsible for the interrupt.Then it
acknowledges the interrupt by reading the appropriate Request Acknowledge register. Note that the single interrupt
signal must be generated by the logical OR of the three request outputs with external output gates, not by ‘wire-
OR’ing’ them.

How the host detects the Service Request

1. Three-level
Hardware
Interrupt

2. Single-level
Hardware
Interrupt

3. Software
Polling

How the host
acknowledges the

Interrupt

a. Hardware-based
service

acknowledge

b. Software-based

service
acknowledge

1a

Full Interrupt – Type A

1b

Full Interrupt – Type B

2a Not recommended

(Inefficient)

2b

Single Interrupt

3a Not recommended

(Inefficient)

3b

Software Polled

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 37

• This method is called ‘Software Polled’. Polling is often used in situations where the host system is primarily
dedicated to servicing the serial channels and has few other tasks to perform. It is usually better when the host CPU
has a long interrupt context switch time. In this method, the host periodically checks the CD1865s to determine if any
service requests are pending. If they are, the host acknowledges them in software and proceeds with the service.

One of the advantages of the CD1865 is that it allows the use of any of the above techniques, or a combination. Such a
combination is referred to as ‘Mixed-mode operation’. In a typical mixed- mode design, normal interrupts are used to
signal to the host that service is required. After the host enters its interrupt service routine, it services the CD1865 that
generated the service request. Then the host polls the CD1865s to determine if more channels require service. If the host
finds a channel requiring service, it handles it in the usual manner, and then proceeds to poll for more service requests.
This process continues until all CD1865s are handled. Because the host is not exiting and re-entering its own interrupt
context each time, much host CPU time is saved, resulting in even faster overall performance.

The Advantage of a mixed-mode design is that the software has complete control of whether to be fully interrupt driven
or to poll in certain circumstances. A mixed-mode design is recommended to tune a system for optimum performance.

A CD1865 evaluation board can be employed to analyze CD1865 performance and evaluate different software
implementations. Intel testing (in an AT-compatible ’386 machine) found that a mixed-mode system provided the highest
overall throughput with minimum host CPU loading. This is generally found to be the case with host processors that
have relatively long interrupt response times, such as the Intel ’386.

5.5.1 Method 1a — Full Interrupt – Type A, Three-Level Interrupt with Three-

Level Acknowledge

This method is illustrated in Figure 8. It is best-suited for 680X0-family processors. The three CD1865 service request
lines are connected to the Interrupt Priority Encoder. When the host performs an interrupt acknowledgment cycle, the
CD1865 responds with its vector. The host uses this vector to jump directly to the appropriate service routine. Other
methods can also be used with a 680X0-based system.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 38 Datasheet

Figure 8. Three-Level Interrupt with Three-Level Acknowledge Example

5.5.2 Method 1b — Full Interrupt – Type B, Three-Level

Interrupt with Single-Level Acknowledge

This method is illustrated in Figure 9. It is useful with 80X86 systems that use the 8259A Interrupt Controller. Since the
8259A supplies its own vector to the host when an INTA cycle occurs, the host can simply read the CD1865’s vector by
the method described in the polled interface example or a separate device select decode can be provided to drive the
ACKIN* input.

After the 8259A supplies a vector to the 80X86 host CPU, the host performs a software acknowledgment to the CD1865,
and transfers the CD1865 vector to the host. This allows the service request to be processed.

EIGHT-LEVEL

PRIORITY

RREQ*
TREQ*
MREQ*

 ACKOUT* ACKIN*

M68000

IPL1

IPL2

IPL3

ENCODER
CD1865 # 2

D0–D7

CS*

A3–A6

A0–A2

MICROPROCESSOR RREQ*
TREQ*
MREQ*

AS*

A8–A23

A4–A7

A1–A3

D0–D7

ADDRESS
DECODE
LOGIC

ACKIN* ACKOUT*

CD1865 # 1

D0–D7

CS*

A3–A6

A0–A2

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 39

Figure 9. Three-Level Interrupt with Single-Level Acknowledge Example

5.5.3 Method 2b — Interrupt Interface, Single-Level

Interrupt with Single-Level Acknowledge

This method is illustrated in Figure 10. It is best-suited to host systems having a single interrupt input. The three service
request lines from the CD1865 are run through an ‘OR’ gate to the host’s interrupt input. When an interrupt occurs, the
host system polls the CD1865s, determines which of the three levels is interrupted, and acknowledges it accordingly.

INT
INTERRUPT

CONTROLLER

(8259A OR

EQUIVALENT)

RREQ*
TREQ*
MREQ*

ACKOUT* ACKIN*

CD1865 # 1

D0–D7

CS*

A3-A6

A0–A2

MICROPROCESSOR

ALE

A8–A23

A4–A7

A1–A3

D0–D7

ADDRESS
DECODE
LOGIC

RREQ*
TREQ*
MREQ*

ACKIN* ACKOUT*

CD1865 # 2

D0–D7

CS*

A3–A6

A0–A2

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 40 Datasheet

Figure 10. Single-Level Interrupt with Single-Level Acknowledge Example

5.5.4 Method 3b — Polled Interface

This method is illustrated in Figure 11. Polled operation can be used with any type of host CPU, or it can be used in
combination with interrupts to provide a mixed-mode system optimized for a particular application. In a polled system, the
host reads the Service Request Status register (SRSR) within the CD1865 to determine whether there are any channels that need
service. (Note that unlike traditional UARTs, only one register needs to be read to determine if there are any channels in any
device that need attention, and this saves time).

If the host finds channels needing service, it acknowledges the required type by reading one of the three Request
Acknowledge registers. These provide a vector that can be used to jump directly to the correct service routine. Processing
from this point proceeds as in the case of interrupt-driven operation. Note that the difference between this method and Method
2b lies in how the host system becomes aware of the need to service the CD1865. In Method 2b a single interrupt starts the
process. In Method 3b the host polls periodically. The two methods can be combined — an interrupt triggers the first service,
but the host continues to poll until any other pending requests are serviced.

INT OR

RREQ*

TREQ*

MREQ*

ACKOUT* ACKIN*

CD1865 # 1

D0-D7

CS*

A3–A6

A0–A2

MICROPROCESSOR

RREQ*

TREQ*

MREQ*

ALE

A8–A23

A4–A7

A1–A3

ADDRESS
DECODE
LOGIC

ACKIN* ACKOUT*

CD1865 # 2

D0–D7

CS*

A3–A6

A0–A2

D0–D7

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 41

There is a difference between the CD1865 and conventional dumb UARTs that makes the CD1865 more efficient even
when operating in a polled environment. With a dumb UART, the host polls each channel in turn to determine whether it
has any data. With the CD1865, the host polls the CD1865s as a group for whether it has data. If it does, the CD1865s
indicates the channel, rather than the host testing each channel in turn. In fact, it is not possible for the host to dictate
which channel is serviced; the CD1865 determines this order. This minimizes both the number of polling steps required
and the amount of time each needs. This also ensures fair, balanced service of all channels.

There are several ways that a host system can poll the CD1865. Each method has certain advantages. The most direct
method is to read the Service Request Status register (SRSR). This register contains three bits that indicate whether there
is a request pending for receive, transmit, or modem signal change, on the CD1865 being read. There are three more bits
that provide the same information for all CD1865s in the system — these three bits reflect the state of the wire-OR’ed
external request lines. Thus a single read operation can determine if there is any activity.

Figure 11. Simple Software Polled Interface Example

RREQ*
TREQ*

 MREQ*

ACKOUT* ACKIN*

CD1865 #2

D0–D7

A3–A6

A0–A2

MICROPROCESSOR

RREQ*
TREQ*

MREQ*

ACKIN* ACKOUT*

CD1865 #1

D0–D7

A4–A7

A1–A3

A3–A6

A0–A2

D0–D7

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 42 Datasheet

5.5.5 Comparison of Interrupt and Polled Code Sequences

Figure 12 and Figure 13 show the code sequences for polled and interrupt service request methods.

Figure 12. Polled Code Sequence

READ SERVICE REQUEST STATUS
FROM SRSR

RECEIVE
REQUEST
PENDING?

N

Y

GOOD DATA

?

N HANDLE
‘BAD’
DATA

TRANSMIT
REQUEST
PENDING?

Y TO
TRANSMIT
ROUTINE

Y

READ REQUESTING CHANNEL NUMBER

N READ NUMBER OF BYTES FROM RDCR

MODEM SIGNAL CHANGE
REQUEST PENDING?

Y TO
MODEM
ROUTINE

SET UP HOST’S BUFFER POINTERS

SET LOOP COUNTER = RDCR

N
READ RDR

READ RRAR TO ACKNOWLEDGE,
GET STATUS VECTOR

WRITE DATA TO POINTER LOCATION

INCREMENT POINTER

DECREMENT LOOP COUNTER

IF
LOOP COUNTER = 0

SAVE PONTER

EXIT ISR

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 43

Figure 13. Interrupt Code Sequence

5.5.6 Cascading Service Requests with Multiple CD1865s

Regardless of the method used to support service requests, multiple CD1865s can be cascaded by tying together all *

lines, all * lines, and * lines. These lines are open-drain so they may be wire- OR’ed. The CD1865s are then daisy

chained by simply connecting the ACKOUT* of one device to the ACKIN* of the next.

The host knows which CD1865 is requesting service by the ID value returned through the Global Interrupt Vector
register. Up to 32 CD1865s can be cascaded in any one daisy chain in this manner. Since multiple daisy chains are
possible, the maximum number of CD1865s can be large. The 32- per-daisy-chain limit is set by the five bits in the
GVR. These bits can be used to identify which CD1865 responded to the service request acknowledge cycle. The user
must program different values into the upper-five bits of each CD1865s GVR.

INTERRUPT OCCURS

READ REQUESTING CHANNEL NUMBER

ENTRY POINT FOR GOOD
DATA INTERRUPT

SERVICE ROUTINE

READ NUMBER OF BYTES FROM RDCR

SET UP HOST’S BUFFER POINTERS

SET LOOP COUNTER = RDCR

READ RDR

WRITE DATA TO POINTER LOCATION

INCREMENT POINTER

DECREMENT LOOP COUNTER

IF

LOOP COUNTER = 0

N

Y

SAVE POINTER

EXIT ISR

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 44 Datasheet

Note that thirty-two CD1865s is the logical limit per daisy chain. Since it takes over 1000 ns for an acknowledgment to ripple down
32 devices, it may not be efficient to have one long chain in heavy-traffic applications.

Note: In some systems that daisy chain many CD1865 devices, a potential timing hazard exists if the host processor does not

allow sufficient time for the removal of the ACKIN*/ACKOUT* daisy-chain signal to propagate through all devices. In
the event that the host processor begins I/O operations with another section of logic and applies DS* (RD* or WR* in an
Intel environment) while an active ACKIN* is being applied to a CD1865 due to propagation delay time, unpredictable
results can occur. This constitutes an illegal acknowledge cycle. The failure mode is most often a cessation of service
requests from the device, especially of the type that is being serviced when the illegal access occurs. Take care to ensure
that the 35-ns propagation delay per device is included in any wait-state generation.

5.5.7 Multiple CD1865s without Cascading

It is possible to interface several CD1865s without using the cascade feature. There is an advantage to this because as there is less
delay incurred while waiting for the service acknowledgment to ripple down a chain of devices. There are two possible
disadvantages. If each of the CD1865’s three service request lines has a separate input to the interrupt controller, the interrupt
controller is more complex, and the fair-share feature does not work. If the service request lines are wire- OR’ed, fair share works,
but the host has to test each CD1865 in turn to see which one generated the service request. To implement this method, simply
connect the CD1865 address and data lines in the usual manner.

5.5.8 Acknowledging Service Requests

As mentioned in Section 5.5 on page 35, two different methods are used to acknowledge a service request. One method is
hardware-based, and the other is software-based. The hardware-based mechanism is a specific type of bus cycle that uses the
ACKIN* and ACKOUT* signals and the in the CD1865. An acknowledge cycle is defined where ACKIN* and DS* are active and
CS* is inactive. This method is used by processors that perform interrupt acknowledge cycles, such as the
680X0.

The software-based mechanism uses three registers — Receive Request Acknowledge register, Transmit Request Acknowledge
register, and Modem Request Acknowledge register. Reading any of these registers has the effect of acknowledging a service
request, and the data read is the appropriate vector, that is, the contents of the Global Interrupt Request Vector register. The low-
three bits of this register are modified to indicate the specific type of interrupt being acknowledged.

If the host reads these registers when no service request is pending, either of two things can happen. If daisy chaining of
acknowledgments is enabled, the ACKOUT* pin of the CD1865 asserts. If daisy chaining is not enabled, the part supplies a
vector with the low-three bits set to a
‘0’. Thus, it is possible to ‘fish’ for service requests, that is, to acknowledge each CD1865 in turn until a non-zero vector is
received.

‘Fishing’ is not usually an efficient software technique, but can be useful in some circumstances. For example, in systems that are
normally interrupt-driven, but where interrupts are not available for diagnostics or other reasons, the host can determine if a
service request is pending by reading the appropriate Request Acknowledge register. The CD1865 must be configured not to daisy
chain; in this case it returns a vector if a request is pending, or ‘00’ if no request is pending. The host can try all three levels of
request in turn. This method works for either single CD1865s or multiple

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 45

devices. In multiple-device systems, either disable daisy chaining on all devices and ‘fish’ each individually, or disable
daisy chaining on the last device only and ‘fish’ the device at the beginning of the chain.

Both methods of acknowledging service requests can be used interchangeably. It is usually advantageous to use Mixed
mode. For example, after receiving an interrupt and servicing it in the normal manner, the host should read the Service
Request Status register (SRSR) to see if other requests are pending. If so, the host can acknowledge by reading the
appropriate Request Acknowledge register (RRAR, TRAR, and MRAR) and proceed to service the request. This avoids
the time required for the host to exit its interrupt routine, only to re-enter it immediately for the next request.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 46 Datasheet

6.0 System Bus Interface and System Clock

Figure 14. Internal Block Diagram

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RXDATA

TXDATA

RREQ*
TREQ*
MREQ*

ACKOUT*

ACKIN*
SERVICE
REQUEST
LOGIC

RECEIVE
SERVICE
REQUEST
QUEUE

TRANSMIT
SERVICE
REQUEST
QUEUE

ROM

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RXDATA

TXDATA

RXDATA

TXDATA

ADR[0–6]
DATA[1–7]

CS*
DS*

R/W
DTA
CK*

INTEL/MOT*

RESET*
CLK

DBLCLK
NO_OSC
OSC1

OSC2

BUS
INTERFACE

MODEM
SERVICE
REQUEST
QUEUE

I/O PINS

CPU

RAM

PER

CHANNEL
TIMER

RTS*
CTS*
DTR*
DSR*
CD*

INTERRUPT
HANDLER

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

RXDATA

TXDATA

RXDATA

TXDATA

RXDATA

TXDATA

RXDATA

(MODEM
CONTROL)

5 LINES
5 LINES
5 LINES
5 LINES

5 LINES
5 LINES

5 LINES

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT

ENGINE

TRANSMIT BIT
ENGINE

DUAL-BAUD RATE
GENERATORS

TXDATA

RXDATA

TXDATA

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 47

6.1 System Interface Considerations

When using the CD1865, two areas where system architects, designers, and programmers should consider options are system
clock speed, and unclocked versus clocked-host bus interface.

6.2 System Clock and Bit Rate Options

6.2.1 System Clock

System clock is a high-frequency clock (supplied by the user) used by the CD1865 to receive all the necessary timing. The
CD1865 is capable of handling system clock levels of TTL-compatible voltage swings; however, the VIL and VIH
specifications are not identical to all families of TTL logic. Specifically, the clock signal (and the reset signal) have lower VIL

and higher VIH than the worst-case specifications of some TTL families. In general, any TTL family is adequate if not heavily

loaded. Refer to the DC Specifications in Section 10.3 for details.

××××××The CD1865 can be operated from the main system clock or its own clock. Operation from the main system
clock can reduce the number of clocks required, and it allows the bus interface between the system and the CD1865 to be
clocked, but in general, typical system clock speeds are not exact baud-rate multiples. As bit rates are received from the
clock, it is important to consider this when selecting a clock value. If exact baud rates are needed, or the system clock is not a
convenient value, the CD1865 must be supplied with its own clock or crystal.

6.2.2 External Clock

It is recommended that the 2×-clock option (oscillator or crystal) be used wherever possible. Figure15 shows a possible
design configuration for the clock circuitry if the crystal is being used. Please refer to the CD1865 Evaluation Kit
documentation for details on the design configurations used. The crystal used for the evaluation board is a 66-MHz third
overtone part.

Figure 15. 2× Clock Option

OSC 2

OSC 1

200K–500K

33 pF 33 pF

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 48 Datasheet

6.2.3 1× Clock

It is recommended that a 2×-clock option be used where ever possible. If using a 1×-clock options, refer to Table 10
on page 129 for clock duty cycle requirements.

6.2.4 Bit Rate Options

The CD1865 supports independent transmitter and receiver bit rates on each of its eight channels. The bit rate is
determined by a 16-bit period value (divisor) stored in the Transmitter Bit Rate Period registers (TBPRH and TBPRL),
or in the Receiver Bit Rate Period registers (RBPRH and RBPRL). These registers establish the period of the
corresponding Transmitter and Receiver Bit Rate counters. To set a given bit rate, the value to be loaded is determined
by the following equation:

 Bit Rate Divisor = (CLK frequency{in hertz}) / (16x desired Bit Rate {in bits per second})

This equation may yield a non-integer result. The nearest integer value is the optimum choice for that bit rate and system
clock combination. The value loaded in the Bit Rate Period registers must be that integer expressed as a 16-bit binary
value. If rounding is necessary, the percentage bit rate error can be calculated by:

 (Bit Rate Divisor – Integer) x 100/Bit Rate Divisor

The popular bit rates and their corresponding divisors at various system clock rates are shown in
Table 5.

Figure 16.

NO_OSC

OSC1

D Q
CKOUT

OSC2

DBLCLK

R Q

FROM RESET LOGIC

CLK

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 49

Table 5. Bit Rate Constants, CLK = 33 MHz

Bit Rate Divisor† Error

110 493e 0.000%

150 35b6 0.000%

300 1adb 0.000%

600 d6e 0.015%

1200 6b7 0.015%

2400 35b 0.044%

4800 1ae 0.073%

9600 d7 0.073%

19200 6b 0.393%

38400 36 0.538%

56000 25 0.461%

57600 24 0.538%

64000 20 0.703%

76000 1b 0.509%

115200 12 0.538%

†All divisor values are in hex.

Table 6. Bit Rate Constants, CLK = 25 MHz

Bit Rate Divisor† Error

110 377d 0.003%

150 28b1 0.003%

300 1458 0.006%

600 a2c 0.006%

1200 516 0.006%

2400 28b 0.006%

4800 146 0.147%

9600 a3 0.147%

19200 51 0.467%

38400 29 0.762%

56000 1c 0.352%

57600 1b 0.467%

64000 18 1.696%

76000 15 2.144%

115200 e 3.219%

†All divisor values are in hex.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 50 Datasheet

Table 7. Bit Rate Constants, CLK = 20 MHz

Bit Rate Divisor† Error

110 2c64 0.003%

150 208d 0.004%

300 1047 0.008%

600 823 0.016%

1200 412 0.032%

2400 209 0.032%

4800 104 0.160%

9600 82 0.160%

19200 41 0.160%

38400 21 1.376%

56000 16 1.440%

57600 16 1.376%

64000 14 2.400%

76000 10 2.720%

115200 b 1.376%

†All divisor values are in hex.

Table 8. Bit Rate Constants, CLK = 15 MHz

Bit Rate Divisor† Error

110 214b 0.003%

150 186a 0.000%

300 c35 0.000%

600 61a 0.032%

1200 30d 0.032%

2400 187 0.096%

4800 c3 0.160%

9600 62 0.352%

19200 31 0.352%

38400 18 1.696%

56000 11 1.547%

57600 10 1.696%

64000 f 2.400%

76000 c 2.720%

115200 8 1.696%

†All divisor values are in hex.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 51

6.2.5 Maximum Throughput Limits

The CD1865 is internally a fully static, synchronous design. Consequently, the maximum data rate handled by CD1865 is
determined by the clock speed at which it is operating. There are a fixed number of CD1865 processor cycles required to
process each bit and character; a slower CD1865 processor rate equates to a slower bit rate. The minimum clock
frequency required can be determined by the data rate needed for support.

In general, the CD1865 can maintain 100% full-duplex throughput when divisors of 16 or greater are used. For a given
master clock frequency, this limitation can be used to determine the maximum bit rate at which the system can sustain
100% throughput on both receive and transmit. Divisors as small as 12 can be used, however a degradation in
throughput is observed. This degradation is seen as gaps between transmit characters and are, in effect, extra long stop
bits. This is a fail-safe condition. Divisors smaller than 12 can work in an application if less than eight channels are
enabled.

6.3 CD1865 Basic Bus Interface and Addressing

The CD1865 is addressed through an active-low Chip Select (CS*) in conjunction with seven Address Inputs A[0:6] that
are mapped CD1865 internal addresses in two addressing modes — global and channel. In Channel Addressing mode,
the bits defining the channel to be accessed are provided from the Channel Access register (CAR) within the CD1865.

The most-significant Address Input (A6) performs the selection between global- and channel- specific addresses. If this
bit is a ‘1’, the address is global, and is not associated with any specific channel. If this bit is a ‘0’, the address is
channel-related.

With the exception of the FIFOs, all channel-specific registers are accessed by first setting the required channel number
in the low-three bits of the Channel Access register. FIFOs can only be accessed within the context of a service routine.
Attempting to force access to a particular FIFO by setting the CAR causes unpredictable and incorrect results. Within the
context of a service request, the effective channel access value is automatically controlled by the CD1865, thus the CAR
should not be modified by the host system during service-request processing.

The advantage of this method is that the host never performs any address computation to access the CD1865 during
service requests. Because only the registers specific for the active channel (that is, the one being serviced) are accessible
to the host within a service request routine. An automatic indexing feature handles this, thus avoiding any burden on the
host. Refer to Section 9.3 on Indexed Indirect registers for details.

6.3.1 Intel Versus Motorola Interface Signals and Addressing

The CD1865 supports two bus handshake methods. One is patterned after the Motorola 680X0- family processors, and
the other after Intel 80X86-bus interfaces. bus interface selection is achieved by the INTEL/MOT* signal. When this
signal is ‘high’, the Intel bus interface is selected, and when this signal is ‘low’, the Motorola bus interface is selected.
This selection affects the logical meaning of two pins, but has no effect on bus timing.

The two signals having dual meaning are RD* versus DS*, and WR* versus R/W*. When the Intel bus interface is
selected, these two pins function as RD* and WR*. These pins can be connected to either the IOR* and IOW*, or to
MEMRD* and MEMWR* depending whether the CD1865 is

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 52 Datasheet

mapped into memory or I/O space. These pins then serve to select the CD1865, and when either is active (along with CS* or
ACKIN*) the CD1865 considers itself selected. CS* and ACKIN* must never be active at the same time.

When the Motorola bus interface is selected, these two signals function as DS* and R/W*. DS* must be asserted (along with
CS* or ACKIN*) for all types of cycles, and R/W* should be low when writing to the device.

In either case, the choice of bus interface is entirely up to the user. This feature is for user convenience, and to accommodate
the address and bus-control logic that are used. The CD1865 has an 8-bit data bus, and it is a common practice (when
connecting 8-bit peripherals to 16- or 32-bit systems) to connect them to only one lane, or 1-byte position. Thus, the CD1865
registers only appear in the host’s address space at every other byte address. The most common practice is to connect the
CD1865 to the portion of the data bus labelled D0–D7. For the little-endian processors, such as Intel’s, the CD1865 appears at
even addresses (A0 = 0). For big-endian processors, such as Motorola’s, the CD1865 appears at odd addresses.

6.3.2 Unclocked Versus Clocked Bus Interface

Depending on the type and speed of the host processor, another important choice is determining whether the system bus
interface will be clocked or unclocked with the host CPU clock. Because there is a single clock for both the bus interface and
bit-rate generation, the decision to use either Clocked or Unclocked bus interface is affected by whether exact bit rates are
required. Most applications do not require exact bit rates, and operate with rates varying by one percent or so. If exact bit
rates are required, the clock speed must be a baud-rate multiple.

One method of bus interfacing may be preferable to another in certain applications. Although the easiest way to interface to
the CD1865 is by using the unclocked handshake supplied by DTACK*, in some cases it may be better to design a clocked
interface. The latter is true if the host system is running at the same clock speed (or a multiple) of the CD1865 speed.

Unclocked Bus Interface

An Unclocked bus interface is the easiest interface to implement. Simply connect the address, data, and control lines in the
customary manner, and use DTACK* to control the number of wait states either by connecting it to the processor’s DTACK*
(if it has one), or by feeding into a wait-state generator. Figure 17 on page 53 shows a typical Unclocked bus interface.

The maximum bus cycle time is two clock periods plus 10 ns, though typically less because this specification is based on
worst-case internal synchronization delays. Using DTACK* saves time; however, it is permissible to hard-wire the wait-state
generator for the maximum time.

Clocked Bus Interface

The CD1865 bus interface is controlled by a state machine that samples on the falling edge of the clock. External strobes
(CS*, DS*, and R/W*; or CS*, and RD* or WR*) that meet the setup time requirement cause a bus cycle to begin. The
external interface can be designed to meet these setup time requirements, and to have shorter CD1865 access cycles. Figure
18 on page 54 shows a typical Clocked bus interface.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 53

A bus cycle consists of two half-clock periods. During the clock-low period, the transaction is set up internally, and the
local bus arbitration occurs. During the clock-high period, the read or write transaction to RAM occurs. On write cycles,
the data from the host is latched internally on the low- to-high clock transition. On read cycles, the data is available
shortly after the end of the clock-high period.

Read and write cycles differ slightly in timing; during a write, it is permissible to remove the WR* or DS* relatively
early during the high-clock period, however, this cannot be done during read cycles. The RD* or DS* Strobe is used as
an output enable, and must remain low for the data to appear on the external data bus.

Service request acknowledgment cycles follow a different timing than ordinary read cycles. First, it is necessary to have
the address stable before asserting ACKIN*. Second, the setup time from ACKIN* and DS* (or RD*) going low to the
falling clock edge is longer due to additional internal logic involved in service request acknowledge cycles.

Figure 17. Typical Unclocked Bus Interface

A[0:6]

R/W*

CS*, DS*

DB[0:7]

DTACK*

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 54 Datasheet

Figure 18. Typical Clocked Bus Interface

There are some general design considerations when interfacing the CD1865 to any host environment.

The three Service Request pins (*, *, and *) can change at any time, and this can introduce metastability problems if the
interrupt controller requires clocked signals. When designing, take care that all signals are stable when needed.

The Service Request pin of the type being acknowledged is negated at the end of the service acknowledgment bus cycle.
Often, during the course of servicing one channel, another channel reaches a state where a request would assert, for
example, while servicing receive on channel one, channel two’s FIFO fills. The Service Request bits in the Service
Request Status register (SRSR) does not reassert until approximately two clock periods after the host completes its write
to the End Of register (). In polled or mixed-mode systems, to determine whether another service request of the same
level is pending, and to make sure that the host does not re-read the SRSR too quickly, insert a No-Operation (or similar)
instruction.

Performing an ‘invalid’ service acknowledgment bus cycle on the CD1865 is permissible, but it can cause problems in
certain circumstances. An Invalid Service Acknowledgment is an acknowledgment for which there is no request
pending.

If a service request acknowledgment bus cycle is performed by the host when no service request is pending, either of two
things can occur. If the value on the address bus matches one of the three values in the three Service Match registers (),
and daisy chaining is enabled, the CD1865 assumes that another device down the daisy chain should receive the request,
and asserts its ACKOUT* pin. This propagates down the CD1865 chain until eventually the last CD1865 asserts its
ACKOUT*.

CD1864

CLOCK

DS*
NEW CYCLE MAY BEGIN

CS*

R/W* DON’T CARE

ADDRESS DON’T CARE VALID DON’T CARE

DATA-READ UNDEFINED VALID

DTACK*

6.4 Interface Examples

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 55

At this point, the system waits endlessly unless the bus cycle terminates. The best method is to connect the ACKOUT*
of the last CD1865 in the chain to a bus-error input on the host. If there are multiple CD1865s that are not cascaded, the
ACKOUT* signals should be OR’ed together through a gate or a PAL.

If an acknowledgment occurs and the value on the address bus does not match any of the Match registers, the first
CD1865 in the chain does not pass it along or assert DTACK* and the system waits endlessly unless there is a bus time-
out or other mechanism to detect this condition. In either of these circumstances, the ‘value’ on the data bus is likely to
be FFh because the bus is floating
(this is system dependent). To make a robust design, do not use FFh as a valid Global Service
Vector register (GSVR) value. If daisy chaining is not enabled, then the CD1865 returns a vector of
‘00’ for invalid acknowledgments.

6.4.1 Interfacing to 80X86-Family Processors

The Intel 80X86 family processors often use the 8259A as the interrupt controller, which supplies its own vector during
the INTA cycle. The easiest way to interface the CD1865 to an Intel processor is by Mixed mode, as described in Section
5.5.

There is one ‘bug’ in the 8259A to be aware of. The 8259A can change the prioritizing of its eight inputs, which can
result in one of its acknowledge outputs going low briefly (~30 ns) if an input changes at a certain time. This typically
occurs if a higher-priority input to the 8259A asserts when the 8259A is about to issue an acknowledge to a lower-
priority device. If this occurs at the beginning of a cycle, this brief pulse can cause the CD1865 (and other devices) to
malfunction. Be sure that this does not occur. See Intel 8259A Data Sheet for details.

6.4.2 Interfacing to 680X0-Family Processors

The 68000-family interface is quite straightforward. The three service request lines go through a priority encoder to the
680X0 IPL inputs. The CD1865s ACKIN* pin is driven by a decoder.

When the 680X0 performs an Interrupt Acknowledge cycle, it drives its address lines A1, A2, and A3 with a three-bit
value indicating the level being serviced. The other address lines are set to a 1. If the level being serviced corresponds to
a level assigned to the CD1865, external decoding logic should assert the CD1865 ACKIN* pin. The value on address
lines A0 to A7 is programmed into the , so the CD1865 recognizes the acknowledgment and proceeds as described in the
Service Request Section 5.3.1.

All CD1865 service requests can also be routed to a single interrupt level by using a Mixed-mode interface, as described
in Section 5.5.

6.4.3 Interfacing to the VME Bus

The CD1865 can be directly interfaced to the VME bus, and only requires a small amount of logic to complete the
interface. This is necessary because service request acknowledgment works differently on the VME bus than on the
CD1865. VME defines seven levels of interrupts; each level can be shared among multiple VME cards. During an
Interrupt Acknowledge cycle, the VME bus provides three bits on the address bus, indicating the level being
acknowledged (A1-A3). Each VME card must pass along an interrupt on all levels it is not using but the CD1865 does
not automatically pass an interrupt acknowledgment.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 56 Datasheet

To recognize how this difference can cause a problem, suppose that the three Service Request lines from the CD1865 are
connected to levels 7, 6, and 5 of the VME bus (see Figure 19 on page 56). Also, attach a 74XX244 so that during an
Interrupt Acknowledgment cycle provides an 8-bit code consisting of the three address bits plus five more hard-wired
bits to the CD1865. Now, whenever an acknowledgment of a level 5, 6, or 7 interrupt occurs, the CD1865 either responds
or passes the acknowledgment properly. If an acknowledgment occurs on levels 1–4, the daisy chain ‘breaks’ because the
CD1865 does not recognize a match.

This condition can be easily rectified, as shown in Figure 20 on page 57. A PAL is used to assert ACKOUT* whenever
ACKIN* occurs on a level not being used by the CD1865. The PAL is programmed for fixed levels. For example, if the
current VME bus Interrupt level is 1–4, the PAL asserts ACKOUT* whenever ACKIN* is active. If the current level is
5–7, the PAL asserts ACKOUT* when ACKOUT* from the CD1865 is active. If required, the assignment of VME
Interrupt levels to the CD1865 can be field-programmable by supplying additional inputs to the PAL, indicating the
levels being used by the CD1865.

Figure 19. Incorrect VME Interface

ACKOUT*

IRQ7*

IRQ6*

IRQ5*

RREQ*
TREQ*
MREQ*

ACKIN* ACKOUT* ACKIN*

A1–A7 A0–A6

IACK*

VME BUS

(BUFFERS NOT SHOWN)

74XX244
CD1865

A1–A3 ARBITRARY
VALUE

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 57

Figure 20. Correct VME Interface

ACKOUT*

IRQ7*
IRQ6*
IRQ5*
IRQ4*
IRQ3*
IRQ2*
IRQ1*
ACKIN*

A1–A7

PAL

RREQ*
TREQ*
MREQ*

ACKOUT* ACKIN*

CD1865

A0–A6

VME BUS
(BUFFERS NOT SHOWN)

74XX244

A1–A3 ARBITRARY
VALUE

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 58 Datasheet

7.0 Serial Interfaces

7.1 Receiver Operation

7.1.1 Basic Operation

All receivers are disabled upon master reset. To prepare a receiver, first initialize and then enable it. Once initialized and
enabled, the receiver monitors the RxD Line and waits for a high-to-low transition, which indicates a Start bit. This
sampling is performed at one-eighth of the System- clock rate regardless of the Programmed bit rate, and it provides
accuracy of synchronization with the incoming data. See Figure 21 below for CD1865 bit synchronization. Once a
transition is detected, the receiver checks the RxD Input state again (a half-bit time later) to validate that it is a Start bit.
A valid Start bit is defined a ‘space’ or a logic ‘0’. If the RxD Input is no longer a ‘space’, then a false Start bit is assumed
and the receiver resumes the search for a high-to-low transition. If a valid Start bit is detected, the RxD Input is sampled
at one-bit time intervals in the middle of the bit to ensure stable data. Characters are assembled according to the
programmed content of the Channel Option register (COR1). Valid character framing (presence of a Stop bit), and
Optional Parity bits are checked. After a character is assembled, it is placed in a temporary Holding register. Then the
CD1865 processor checks for error conditions, FIFO overrun, and special character match before placing the character
and its corresponding status into the Receive and Status FIFOs.

7.1.2 Receive FIFO Operation

Eight bytes of FIFO are assigned to each receiver for data storage, in addition to the Receive Holding register and the
Receive Shift register. Once the number of data bytes received and stored in the FIFO reaches a programmed threshold,
the CD1865 can be programmed to generate a service request. See Figure 22 on page 59 for Receive Operation. The
Receive FIFO Service Request threshold can be selected by programming the RxTH bits 3:0 in the Channel Option
register 3. A service request threshold of one-to-eight characters can be selected. Once this threshold is defined, a service
request is automatically triggered when the condition is met. It is possible that by the time the host responds to the
service request, there is more data in the FIFO than the threshold level.

Figure 21. Bit Synchronization in CD1865

SAMPLES AT
1/8-SYSTEM

CLOCK

full-bit
time

full-bit
time

full-bit
time

full-bit
time

full-bit
time

full-bit
time

full-bit
time

full-bit
time

full-bit
time

Start
Bit Detect

1/2-bit
time

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 59

An overrun condition occurs when the new data arrives, but the Receive FIFO and the Receive Holding register are both
full. The new data is lost and the overrun indication is flagged on the character in the Holding register. That character
and its status including the overrun indication is eventually transferred to the host by a Receive Exception Service
Request. Note that this character is good, and is the last character received before the overrun occurred.

Receiver Service Requests are enabled or disabled by the Receive Data bit in the Enable register
(). Receive Data bit, when set to a ‘1’, enables service requests to be asserted for the above causes.

The Prescaler Period Counter is a 16-bit counter clocked by the system clock. If the system clock is a 33-MHz clock, the
maximum count establishes a clock tick every 1.9859 ms. The Prescaler Period should be set to generate a minimum tick
period of 1.0 ms. The Receive Time-out Counter is an 8-bit counter decremental on every tick of the Prescaler Period
Counter. At the maximum count per tick, the maximum time-out period is 0.506 seconds.

The Receive Time-out is always enabled to transfer data when the Receive Data Service Request is enabled. From the
system applications view-point, this time-out function is important for asynchronous data transmission. This is especially
true when a FIFO is in use and a service request threshold for the FIFO is set greater than one character. The Timer
Service Request eliminates long response times when excessive delay between characters occurs caused either by the
remote operator or due to the line being disabled. The ‘No New Data’ Timer Service request, which occurs after all data is
transferred to the host, may be used to manage transfers from the host’s receive data buffers.

Figure 22. Receive Operation

RECEIVE DATA COUNT REGISTER

RECEIVER
FIFO

RECEIVE
STATUS
FIFO

BACKGROUND CODE:

H.R.-TO-FIFO TRANSFER, FLOW

CONTROL, OTHER FEATURES

(POLLING LOOP)

RECEIVER HOLDING REGISTER
FULL/

EMPTY

RECEIVER SHIFT REGISTER

BIT

RECEIVER

FOREGROUND CODE:
BIT ASSEMBLY,

S.R.-TO-H.R. TRANSFER

(INTERRUPT-DRIVEN)
DTR
OUT

DSR
IN

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 60 Datasheet

7.1.3 FIFO Timer Operations

The CD1865 uses the Receive FIFO Timer for two purposes. The first is to avoid ‘stuck’ (or
‘stale’) data in the FIFO caused by not receiving enough characters to trip the threshold, which causes a service request
to be issued. The second is to signal the host that there has been a relatively long pause in received data. It is useful for the
host to know that ‘no data has arrived lately’ when managing relatively large I/O buffers. This event flushes the buffer
up to the host for processing.

To avoid ‘stuck’ data, each time the CD1865 moves a character into a channel’s Receive FIFO, it sets the channel’s
Receive FIFO Timer to the value contained in the channel’s Receive Time-out Period register (RTPR). If the timer
expires before new data arrives, a Receive Good Data sub-type service request is asserted for the channel if the Receive
Data Enable bit in the is set.

The other receive timer option is to generate a service request for the first Receive Data Time-out following the transfer
of all data from the channel to the host. This is called the No New Data Time-out (NNDT). This service request is a
Receive Exception sub-type with a status type of ‘Time-out Exception’. There is no data character associated with the
Time-out Exception status. This option can be enabled or disabled by controlling the NNDT bit in the.

If enough data arrives to fill the Receive FIFO to the level set by the RxTh bits in COR3, or if a special character arrives
in the Receive FIFO and the RxSC bit of is set, the channel asserts the Receive Data Service Request without waiting for
the timer to expire.

If the timer times-out and the FIFO is not empty, the ‘stale data’ condition has occurred, and the device posts a Receive
Good Data Interrupt. If the timer times-out and there is no data, two conditions are checked. First, a test is made to see if
the feature is enabled, if it is true, then another flag is tested to make sure this is the first time the condition has occurred.
If this is true, a Receive Exception Service Request is posted. (The NNDT internal flag is armed when the FIFO is
emptied).

7.1.4 Receive Service Requests

The Receive Service Request is unique as it has two sub-types; that is, it is capable of returning one of two different
vectors during a service request acknowledge cycle. The two sub-types are Receive Good Data and Receive Exception.
The reason there are two types within one category of service request is because while Good Data and Exceptions
require different handling, they are both of equal priority and need to be serviced in the order they were received.
Suppose, for example, two good characters are received, then an erroneous character, then another good character, then
there must be a service request for the first 2 bytes of Good Data, then for the Exception, and then for more Good Data.
If Exception Service Requests were at a different level, the erroneous character would be processed either before or after
the Good Data, and not in normal sequence. Receiver Service Requests are invoked under several conditions.

Conditions that cause a Receive Good Data Service Request are:

• Receive FIFO threshold reached or exceeded

• Receive FIFO time-out — interval between character receptions exceeds time-out value

Conditions that cause a Receive Exception Service Request are:

• Receive erroneous data (parity error)

• Framing error (No Stop bit)

• No data received time-out (optional)

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 61

• Special character detection

• Break detect

Note: Data cannot be read from the Receive FIFO or the Receive Status FIFO except when the CD1865

is within the context of a Receive Data Service Request for a specific channel.

7.1.5 Receive Good Data Service Request

A Receive Good Data Service Request is asserted for any of the following three conditions:

1. Receive FIFO threshold reached, and the FIFO contains Good Data.

2. Receive FIFO threshold not reached, but the FIFO contains Good Data and the Receive Data
Timer times-out.

3. Receive FIFO threshold not reached, but the FIFO contains Good Data and the newly arrived data contains an exception
condition.

When any of these conditions occur, the modified service request vector indicates to the host that the service request is for
Good Data.

It is not necessary to take all or any of the available Good Data when a Good Data Service Request is received. If a host buffer
is too full to accept 8 bytes, a smaller number (even a ‘0’) can be read. Service request context is then left, and the host buffer
is dealt with first. The CD1865 generates another Good Data Service Request when any of the three conditions listed above
are met.

The CD1865 immediately generates another service request if the condition that caused it in the first place remains true. If no
data is read, this is always the case. If some, but not all of the available data is read, Conditions 1 and 2 are not true; but
Condition 3 may be true if an exception condition caused the Good Data Service Request. If this is a problem, one solution is to
temporarily disable Receive Service Requests on that channel. To avoid FIFO overflow, do not delay handling the channel for
too long.

7.1.6 Receive Exception Service Request

Unusual or exception conditions are reported to the host one character at a time through the Receive Exception Service
Request. As with normal receive processing, the host determines the requesting channel by reading the GCR. It can then
determine the specific exception(s) by reading the Receive Character Status register before performing the appropriate action.
Receive Exceptions are always 1-byte deep; multiple bytes of exception conditions causes multiple Receive Exception
Service Requests.

For many exceptions, it is not necessary to read the Receive Data register after the Receive Status register is read. For
example, if special character detection is enabled, and the service request is for recognition of a special character, the character
is known by definition because the exception code indicates the detected character or character sequence.

However, for every exception a byte is placed in the Data FIFO, even though the contents of that byte may be suspect data,
and the byte is discarded at the end of the exception service routine regardless of whether it was read by the host or not. This is
done to keep the Status and Data FIFOs in lock-step with each other. This is different in the case of a Receive Good Data
Service Request where the user is free to read as many or as few bytes as required.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 62 Datasheet

Regardless of the number or type of exceptions occurring, they are reported to the host one character at a time; that is, the
number-of-bytes value in the Receive Data Count register is not meaningful. Since every error is reported individually, there
is no Receive Time-out Exception generated if the only characters in the FIFOs are error or exception characters.

7.1.7 Types of Errors

There are four types of errors recognized by the CD1865: parity, framing, line break, and overrun. If parity checking is
enabled, parity errors are logged in the Status FIFO and the suspect data is placed in the Receive Data FIFO. An error is also
logged for framing, that is, absence of a Stop bit. In these cases, the suspect character is in the Receive Data FIFO and the
appropriate status byte is placed in the Status FIFO.

When a line-break condition is recognized (zero data with zero parity, and no Stop bit), one NULL (00) character is loaded
into the Receive FIFO, and a break status is recorded in the Status FIFO. Note that if odd parity is set and the bits received are
all zeroes, it is marked as both a break character and a parity error. Generally when a break character is received, pre-set
parity error can be ignored. No further FIFO entries are made until normal-character reception is resumed, for example, a
Start bit is found. The line must go high and then back to low for this to occur.

Multiple errors in 1 byte are possible because the CD1865 evaluates the characters bit-by-bit as it receives them. For example,
a parity error is detected and flagged before the CD1865 recognizes that a framing error has occurred. Parity plus framing or
parity plus break error can occur, but framing plus a break error cannot occur because, if a character is received with every bit
equal to a ‘0’, it is marked as a break character. If some bits are a ‘1’, but the Stop bit is missing, for example, a ‘0’, it is
marked as a framing error. Thus, any one character cannot have both framing and break errors.

The length of the Stop bit is not checked by CD1865. Any Stop bit long enough to be sampled in mid-bit time as a ‘1’ is
interpreted as a valid Stop bit. In addition to all of the other errors, if an overrun occurs, the Overrun Error bit is set along with
other error bits.

7.1.8 Types of Exceptions

7.1.8.1 Special Character Recognition

‘Special Character Recognition’ is a feature found only on the CD1865 and other Intel data communications controllers. The
on-chip processor compares every good character received with user-defined special characters stored in registers on the
device. Both single-character and two- character sequence recognition is possible. This capability has several applications,
including In- Band Flow Control. Special-character matches are reported to the host by a Receive Exception Service Request.

Four Special Character registers are provided per channel, allowing received characters to be compared to as many as four
special characters. However, these four registers are shared between Receive Special Character Detection and the Send
Special Character Command, so some planning is required for using these characters.

The full set of features and options available as part of Special Character Recognition allows for Xon/Xoff flow-control to be
implemented transparently to the host, and at the same time, detect either of two other special characters in the data stream
and alert the host of their arrival.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 63

Note: The two-character pairs can share a common first character; however, the same character must be programmed in

both SCHR1 and SCHR2.

Single- versus double-character recognition is controlled by XonCH and XoffCH. If single- character compare is enabled, the
CD1865 compares data in the data stream against the four special characters stored in the Special Character registers (SCHR1-
4). If fewer than four special characters are required, the unused Special Character register(s) should be disabled by
duplicating the pattern to be matched in the unneeded register. When reporting a special character, the CD1865 always reports
the lowest-number Special Character register that matches.

To set up Special Character Recognition, first set the characters to be matched in registers SCHR1-
4, then set XonCH and XoffCH according to the length of match wanted. Set the SCDE bit, and lastly enable service
requests by setting RxSC.

Special characters are reported to the host by placing the appropriate status word in the Status FIFO and the recognized special
character in the Receive Data FIFO. In the case of a two-character sequence, only the second character is stored in the
Receive FIFO. This is because there is room only for one character and preserving both is not needed as these characters are
user-defined.

7.1.9 Flow-Control Characters

Automatic In-Band Flow Control of the CD1865 transmitter is a subset of the Special Character Recognition capability, so to
understand both these features is important. Refer to Section 7.2 on page 68 for transmitter operation. Flow-control characters
and operation are programmable on a per-channel basis. This is important to operating systems that allow users to configure
their own terminal settings independently.

The user may individually enable any CD1865 channel to recognize special characters. There are
six bits used to control the various recognition and flow-control modes.

The following four registers are used to control character recognition:

Bit Name Register Function

SCDE COR3 Enables detection of special characters. Must be set for In-Band Flow
Control to work.

RxSC Enables generation of service requests. Cannot be overridden by

other bits. Does not need to be set for In-Band Flow Control to work.

XonCH COR3 Controls single- versus double-character matching.

XoffCH COR3 Controls single- versus double-character matching.

The following table shows the effects of XonCH and XoffCH:

XonCH XoffCH Characters matched

0 0 Match on: any of SCHR1–4

0 1 Match on: SCHR1 or SCHR3 or (SCHR2 and SCHR4)

1 0 Match on: (SCHR1 and SCHR3) or SCHR2 or SCHR4

1 1 Match on: (SCHR1 and SCHR3) or (SCHR2 and SCHR4)

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 64 Datasheet

Because the CD1865 performs flow-control functions before the data is passed to the host, the response time required of the
host to avoid data overrun is greatly reduced. Additionally, the flow- control characters can be stripped from the data stream,
relieving the host from processing them.

To use automatic flow-control, the Special Character Detection (SCDE) must be enabled by bit 4 of Channel Option register 3
(COR3). This causes all error-free received data to be compared for a match with the Special Character registers (SCHR1–4).
In addition, flow-control must be enabled by Transmit In-Band Enable (TxIBE, bit 6) of COR2. This causes the special
characters to be interpreted as flow-control characters. For single-character flow-control sequences, SCHR1 is used as Xon
and SCHR2 as Xoff. SCHR3–4 are available for use as normal special-detect characters. If two-character sequences are
enabled by XoffCH and XonCH (bits 6 and 7) of COR3, SCHR1 and SCHR3 form the Xon sequence, and SCHR2 and
SCHR4 form the Xoff sequence.

If flow-control characters are passed to the host, they are marked as special characters 1 or 2 in the Receive Channel Status
register (RCSR). If a two-character sequence is detected, it is compressed to the second character and a status indicating a
match of the first character is set. A valid two- character sequence requires that both characters be received without error; if an
error occurs on the second character the first character is treated as a normal character, and this does not affect non- flow
control special character detection.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 65

Bits affecting flow control are summarized below.

Bit Name Register Function

SCDE COR3 Enables Special Character Recognition.
TxIBE COR2 Enables Automatic Transmitter Flow-Control.
FCT COR3 Sets Transparency mode of flow-control.

XonCH XoffCH Xon Xoff
 0 0 SCHR1 SCHR2
 0 1 SCHR1 (SCHR2 & SCHR4)
 1 0 (SCHR1 & SCHR3) SCHR2
 1 1 (SCHR1 & SCHR3) (SCHR3 & SCHR4)

The FCT bit controls whether flow-control characters are passed on to the host. It has meaning only when In-Band flow control
is enabled, that is, TxIBE is set. When the CD1865 receives a flow- control character or character sequence and FCT is a ‘0’,
it starts or stops the transmitter, as required, and passes the character onto the host as a Receive Exception. Since there is a one-
to-one correspondence between the Status and Receive FIFO, the flow-control character detected is stored in the Receive
FIFO, and a status byte indicating special-character detect is stored in the Status FIFO. If FCT is a ‘0’, RxSC must be set to
enable service requests to be issued to the host. Otherwise, flow-control characters cannot be passed as Receive Exceptions
and is instead passed as Good Data.

If the FCT bit is a ‘1’, the CD1865 still starts or stops the transmitter, as required, but the character(s) are discarded, and no
exception is posted. In either case, the flow-control status of the transmitter (on or off) is maintained by the CD1865 in the
Channel Control Status register (CCSR).

The FCT bit makes it possible to support ‘escaping’ of flow-control characters. Some systems follow a convention where two
identical flow-control characters in a row indicates that flow control is not to be performed, but rather one flow-control
character is to be kept in the normal received-data stream, and the other ‘escape’ character is to be discarded. If the CD1865 is
in such a system, set the FCT bit to a ‘0’, allowing flow-control characters to pass onto the host. When the host detects two
flow-control characters in a row, it simply restores the proper flow-control state of the channel and discards one of the
characters. However, for most systems the FCT bit can be set to a ‘1’, reducing loading on the host.

7.1.9.1 No New Data Received Time-Out

It is sometimes useful for the host to sense that ‘no data has arrived lately’, when managing relatively large I/O buffers. This
event is used to flush the buffer up to the host for processing. One of the receive timer options, No New Data Time-out
(NNDT), generates a service request for the first Receive Data Time-out following the transfer of all data from the channel to
the host. This service request is a Receive Exception sub-type, and can be enabled or disabled by controlling the NNDT bit in
the. Refer to Figure 23 on page 67 for the timer logic.

The timer is started only on data arrival. If the CD1865 processor determines that the Receive FIFO is empty, the timer has
expired, and there is a previous receipt of Good Data (and the timer feature is enabled), a Receive Exception occurs with a
status indicating that a time-out has occurred.

If the last Receive Exception Service Request was triggered by a time-out (to avoid ‘stale’ data) the No New Data Time-out
Service Request occurs immediately after the Data Transfer Service Request completes. If the last service request was
triggered by reaching the threshold, the timer

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 66 Datasheet

still has to expire so that some time passes before the No New Data Service Request occurs. Likewise, if the last service
request was triggered by some other error, such as parity, the timer still has to expire so that some time passes before the No
New Data Service Request occurs.

The No New Data function should not be confused with the time-out that occurs when there is Good Data in the FIFO but the
threshold has not been reached and the timer expires. This event is a Receive Good Data Service Request, and not a Receive
Exception event. Timing-out to transfer Good Data before it becomes ‘stale’ is standard, and it cannot be turned off by the
user.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 67

Figure 23. No New Data Timer Logic

BACKGROUND SCANNING
DETECTS NEW CHARACTER

ARRIVED

...FROM OTHER
BACKGROUND

PROCESSING...

PUT CHARACTER IN FIFO;

RELOAD TIMER
N

TIMER

= 0

?

RESUME BACKGROUND

SCANNING LOOP...

IS

Y

FIFO
EMPTY

?

Y

N

POST RECEIVE GOOD
DATA SERVICE REQUEST

NO NEW DATA
TIMEOUT FEATURE

ENABLED

?

N

Y

NNDT
INTERNAL FLAG

’ARMED’

?

N

Y

CLEAR NNDT
INTERNAL FLAG

POST RECEIVE EXCEPTION
SERVICE REQUEST

RESUME BACKGROUND

SCANNING LOOP...

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 68 Datasheet

7.1.10 Programming Notes

If a special condition (for example, framing or a parity error) occurred on a special character, the CD1865 does not
interpret this character as matched. Flow-control characters that are processed and discarded because FCT is set never
cause an overrun.

Special Character Recognition only occurs on characters that have no other problems or errors. There is one case where
the CD1865 does not find a special character even though the character has been correctly received. If a good character
arrives as the ninth character (for example, the FIFO is full), it stays in a Holding register. If another character arrives,
the good character in the Holding register has its status marked as ‘overflow’, indicating that it is the last good character
received; however, it is not recognized as a special character.

There are two cases where the CD1865 might not detect a two-character sequence. If the first character has been found,
but no other character has been received for a long period of time and the Receive Time-out event occurs, no match is
found because the first character is flushed up to the host. If special-character detection is disabled by clearing SCDE
just when the CD1865 has received the first two-character special-character sequence, but has not received the second
character yet, the first character is lost.

7.2 Transmitter Operation

7.2.1 Basic Operation

Refer to Figure 24 on page 69 for a diagram of transmitter operation. Upon power-on reset, all transmitters are disabled
with their Transmit Output held in the ‘Mark’ or a logic ‘1’ condition. Other channel parameters are undefined. The
minimum configuration of a channel for transmission consists of specifying the bit rate, parity, and number of Stop bits.
In-band and Out-of-Band Flow Control should also be set as required. Next, set either (or both) of the service request
enable bits. Then issue the Transmit Enable Command and either of two service request enable bits. For normal operation,
set the TxRDY bit. This causes a service request to be issued when the FIFO is empty. Since on power-up the FIFO is
empty, a service request is received (less than 1 ms.), and at that time data can be transferred to the FIFO. Data can not be
transferred to the FIFO as part of channel initialization; instead one has to be in the service-request routine to do this.
Refer to the Section 5.3 for details.

Once the channel is initialized and serviced, and a character is written into the Transmit FIFO, the transmitter starts to
transmit by first sending the Start bit (space or a logic ‘0’) followed by the data character according to predefined
character length, least significant bit first. An optional parity bit
(none, odd, even, or forced) is appended followed by the final Stop bit (a logic ‘1’ or a ‘Mark’). The length of the Stop
bit can be one, one-and-a-half, two, or two-and-a-half bit-times long.

The transmitter continues sending characters one after the other until the Transmit FIFO is empty. When the Transmit
FIFO is empty and the last character is sent, the transmitter stops transmission and holds the TxD Output in the ‘Mark’
(1) condition. Transmission resumes another character is in the FIFO.

In some cases it must be determined if the channel is completely done transmitting the last bit of the last character — for
instance, before changing the bit rate. In such a case, the service request is to be issued only when the last character is
sent, rather than when the FIFO is empty. In this case, instead of setting the TxRDY bit, set the TxMpty bit. This causes
a service request to be issued only when the transmitter is completely empty.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 69

7.2.2 FIFO Operation
An 8-byte FIFO is provided for each transmit channel. In addition to the 8-byte FIFO, the CD1865 also contains a Transmit
Holding register and the Transmit Shift register for each channel. However, when servicing a Transmit Service Request, only
up to eight characters can be written into the Transmit Data register (TDR) consecutively.

7.2.3 Transmit Service Requests

Generating a Transmit Service Request depends on control bits in the Enable register (). Setting the TxRdy bit of the specifies
that a Transmit Service Request be generated when the FIFO is empty. When this condition occurs, there is still one character
in the Transmit Holding register and another character in the Transmit Shift register. The host CPU, therefore, has up to two-
character times to respond before the transmitter output goes into the idle (Mark) condition.

Setting the TxMpty bit instead of the TxRdy bit of the specifies that a Transmit Service Request be generated only when the
FIFO, the Transmit Holding register, and the Transmit Shift register are empty. When this condition occurs, it means that all
characters are completely transmitted and the channel can now be re-configured. It is recommended that one of the two bits be
set as needed, but do not set both bits at the same time.

End of a service request must be signalled to the CD1865 by writing to the End Of register ().

 For details on transmitter flow-control operation, refer to the Section 7.3 on page 72.

Figure 24. Transmitter Operation

TRANSMITTER

FIFO

FULL /

BACKGROUND CODE:

FIFO-TO-H.R. TRANSFER, FLOW

CONTROL, OTHER FEATURES

(POLLING LOOP)

TRANSMITTER HOLDING REGISTER EMPTY

BIT

TRANMSITTER SHIFT REGISTER

FOREGROUND CODE:
BIT DISASSEMBLY, H.R.-
TO-S.R. TRANSFER

(INTERRUPT-DRIVEN)

RTS

OUT
CTS

IN

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 70 Datasheet

7.2.4 Special Transmitter Commands

The CD1865 is capable of sending special characters preemptively (bypassing the FIFO): sending break characters and
inserting delays or pauses either between characters or to lengthen a break. There are two basic mechanisms the CD1865
uses for these ‘Send Special Character’ and
‘Embedded Transmit Command’ functions.

7.2.5 Special Character Transmission by Send

Special Character Command

Selected special characters, or two-character sequences, may be transmitted preemptively by setting the appropriate bits
in the Channel Command register (CCR). The Send Special Character

(SEND SP CH) bit of the CCR, when set, initiates the Send Special Character Command. SSPC0–
2 bits of the CCR then specify which character or two-character sequence is used. The choice of a single- or two-
character sequence is determined by the XonCH and XoffCH bits of COR3.

When a Send Special Character Command is given, the CD1865 inserts the special character(s) into the data stream
immediately following the current character in the Transmit Holding register. Thus, it is ensured that the special
character begins transmitting within two-character times after the command is issued. The Send Special Character
Command overrides all other flow-control modes, including the state of TXEN and CTS*. Generally this is the preferred
case. However, sample CTS* or CD* in some applications to determine if it is okay to send a character before invoking
the Send Special Character Command.

The CCR is reset by the CD1865 as an acknowledgment of the command. A new command must not be issued if the

CCR contents are non-zero. A send special character command is recognized and cleared within 125 µs (at 15 MHz,
proportionally longer at lower clock speeds), unless a break is being sent. If a break is being sent, the special character is
not sent until after the break time is complete.

7.2.6 Embedded Transmit Commands

The CD1865 may be enabled to recognize certain ‘escape’ sequences as commands embedded in the Transmit Data
Stream. These commands are issued to introduce a time delay between characters, to insert an idle period during the
transmission, or to send a break on the line.

These capabilities are enabled on a per-channel basis by setting the Embedded Transmit Command
(ETC) bit in the Channel Option register 2 (COR2). The ‘null’ (00) character is used as the controlling character to
initiate the special action. To preserve data transparency, two mechanisms are provided to allow the null character to be
sent as data. If the host must transmit a null character as data, either the ETC mode may be disabled, or the null character
may be preceded by a null, that is, ‘00 00’ causes one-null character to be sent. If the ETC bit is not set, the ‘00’
character has no effect, and it may be sent as ordinary data. ETC mode may be enabled or disabled ‘on-the-fly’.

The CD1865 uses the Transmit Timer to generate time delays between characters in the output data stream. It is also used
to extend the duration of a line-break transmit condition when the delay is inserted between the ‘Start Break’ and ‘Stop
Break’ embedded-transmit commands. All of the timers count ticks are determined by the Prescaler Counter. The two
eight-bit Prescaler Period registers (PPRH and PPRL) determine the real-time length of a tick. A tick is the period of the
CD1865 System Clock Input (CLK) multiplied by the Period registers’ contents.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 71

7.2.7 Sending Breaks

Line breaks may be sent by embedding the following sequences in the data stream (all values are given in Hex):

00 81 Send Break: Enter line-break condition for at least one character time. The line enters the break condition and
stay there until one of the following conditions is met:

1. Another character needs to be sent.

2. If the Insert Delay Special Character Sequence immediately follows the Send Break Sequence, the duration of the
break transmission is extended by the amount of the programmed delay. The Insert Delay Sequence is: 00 82 xx.
This inserts a delay of ‘xx’ (interpreted as an unsigned binary number) times the programmed timer ‘tick’ set by the
Prescaler Period registers. Multiple insert delay commands can be executed consecutively by the CD1865 to allow
delays of arbitrarily long length. If ‘xx’ is a zero, no delay is inserted.

3. The Stop Break Sequence ‘00 83’ is encountered next. This sequence is optional, and exists to provide a way to
terminate a break without actually sending another character. If another character is being sent anyway, no Stop
Break is required.

If there is no more data to be sent, the TxD pin remains in the state it was left in by the last character. Since the Stop bit
is always a ‘1’, the line is left in the idle state after any character, except for the break character. The break character
leaves the line in the ‘0’ state until more data needs to be sent. Long breaks can be sent by simply sending one break and
then waiting. To terminate the break, send the Stop Break Sequence or send another character.

Sending long breaks has precedence over the Send Special Character Command, for example, the time delay duration
must pass before the special character is sent.

7.2.8 Sending Inter-Character Delays

In some applications it is desirable to pause between characters. For example, certain types of electro-mechanical
teletype equipment cannot handle characters continuously at their specified bit rate. To accommodate this, the CD1865
allows insertion of a delay between characters.

The user embeds an escape sequence into the Output Data Stream to generate delays between characters. When the
CD1865 encounters the Insert Delay Escape Sequence, it sets the Transmit Timer to the value contained in the Escape
Sequence. When the timer expires, the CD1865 loads the next character into the Transmit Shift register and resumes
output (unless the next character begins another Escape Sequence). The Escape Sequence for an inserted delay consists
of three characters: ‘00’, ‘82’, and ‘tt’. The time-out value ‘tt’ is expressed in timer ticks.

7.2.9 Summary of Special Transmitter Commands

The ETC bit in COR2 must be set to enable the following functions:

 Char. Sequence Effect

00 00 Send one-null character

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 72 Datasheet

7.3 Flow Control

Variations in response times and system data transfer rates between systems communicating across asynchronous
interfaces give rise to a need to control the flow of data between them. Systems typically are implemented with a receive
buffer for temporary storage of data. When this buffer is nearly full, the receiving computer ‘flow-controls’ the remote
transmitter. When, after processing the existing data, more buffer space is available for the receive process, the receiving
computer signals the remote to resume transmission.

Flow control is implemented in one of two ways — ‘out-of-band’ or ‘in-band’ signaling. Out-of- band signaling is a
hardware-based mechanism, performed by extra wires such as the RTS/CTS and DSR/DTR pairs. It has the advantage of
complete independence from the data stream. However, it is not always possible to provide all of the wires necessary to
support Out-of-Band Flow Control. Also standards for implementing Out-of-Band Flow Control vary widely.

In-Band Flow Control works by inserting special flow-control characters into the stream of data being sent. It has the
advantage that only the data circuit is required, thus only two wires are needed. The disadvantage of In-Band Flow
Control is that the two communicating computers must perform additional functions, specifically, they must monitor the
data stream for flow-control characters and take the appropriate action. This can be quite burdensome because the host
computer that receives a flow-control command must recognize this event quickly and respond in a timely manner to
avoid overrun at the remote receiver.

Although there are advantages and disadvantages to each system, in general the trend is toward In- Band Flow Control.
This is because it is more useful than Out-of-Band Flow Control over a wider range of applications, such as
communication by modems.

The CD1865 provides significant performance advantages over conventional solutions during both the receive processing
of and the transmission of flow-control characters. It does this by handling almost all flow control automatically, without
host intervention. It also provides tools to make host intervention, when required, much easier. Because the CD1865
performs flow-control functions automatically, before the data is passed to the host, the response time required of the
host is substantially reduced. The possibility of data overrun is also reduced. Additionally, the flow- control characters
themselves can be stripped from the data stream, relieving the host from processing them. The flow-control status of the
transmitter is always available to the Host as a bit in the Channel Control Status register (CCSR).

7.3.1 Receiver Flow Control

The CD1865 provides both In-Band (Xon/Xoff) and Out-of-Band Flow Control functions for ensuring that the receiver
does not overflow. In-Band Flow Control is semi-automatic and helps the host manage its buffer size. Out-of-Band Flow
Control is fully automatic and can be used to prevent the CD1865 Receive FIFO from overflowing. Figure 25 on page 73
diagrams the receiver flow-control logic.

 Char. Sequence Effect

00 81h Send one-character time of line break

00 82h xxh Delay for ‘xx’ prescaler time ticks (for example,

Transmit Timer Value is ‘xx’)

00 83h Stop break

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 73

When the CD1865 receiver is too busy, the transmitter can be used to send Xoff/Xon to the remote device. This Receiver
Software (In-Band) Flow Control is covered in Section 7.3.3 on page 74.

The CD1865 transmitter can be controlled by the remote device. This Transmitter Software (In- Band) Flow Control is
covered in Section 7.3.6 on page 76.

The current flow-control status is always available to the host. It is stored in the Channel Control Status register (CCSR). Two
bits, Receive Flow-on and Receive Flow-off, show whether the last flow-control command sent by the CD1865 was on or off.
As long as the receiver is enabled, the CD1865 continues to receive any data sent regardless of whether it has requested the
remote to shut off.

Figure 25. Receiver Flow-Control Logic

7.3.2 Receiver Hardware (Out-of-Band) Flow Control

Out-of-Band Flow Control uses the Modem Handshake signal (DTR*) to control the flow of data. Whenever the Receive
FIFO reaches a user-defined threshold, DTR* is negated. This event can be used to signal the remote to stop sending
characters. The threshold is set by four bits in the Modem Control Option register 1, and can be any level from one to eight, or
disabled. The DTR* pin is also negated whenever DTR* mode is set and the channel is disabled or reset. If DTR* mode is not
set, the DTR* pin is not changed by the CD1865, and remains at whatever value the host sets it to.

While it is possible to set the DTR* threshold lower than the service request threshold, the part operates as though the DTR*
threshold was the same as the service request threshold. If the DTR* threshold is set lower, it is ignored, and DTR* negates
when the service request threshold is reached. If required, set the DTR* threshold to a ‘1’, and then it ‘tracks’ the other
threshold automatically.

RECEIVER FIFO, STATUS FIFO

BACKGROUND CODE:

H.R.-TO-FIFO TRANSFER, OTHER

FEATURES. FLOW CONTROL:

MATCH SPECIAL CHARACTER?
DSR* ASSERTED?

DTR* THRESHOLD REACHED?

(POLLING LOOP)

RECEIVER HOLDING REGISTER

FULL/
EMPTY
BIT

RECEIVER SHIFT REGISTER

FOREGROUND CODE:
BIT ASSEMBLY,

S.R.-TO-H.R. TRANSFER

(INTERRUPT-DRIVEN)

DTR
OUT

DSR
IN

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 74 Datasheet

The receiver monitors the state of DSR* (if enabled) and ignores data on the Receive Data pin if
DSR* is negated. This feature is controlled by the DsrAE bit, bit 0 of Channel Option register 2
(COR2).

7.3.3 Receiver Software (In-Band) Flow Control

Host receive buffers often cannot keep pace with data being received. The CD1865 transmitter can be used to send flow-
control characters to the remote device. This avoids over-flowing the receive buffers in the host. However, transmitting flow-
control characters is an additional complication and source of delay when using conventional devices. As the host’s receive
buffer becomes full, the transmit process must be flagged to insert a flow-control character (or sequence) in the Transmit Data
Stream. Any data already in the Transmit FIFO is transmitted ahead of the flow-control character, increasing the response
time at the remote end.

With the CD1865, In-Band Flow Control of the remote system is semi-automatic; two commands
(Send Xon, Send Xoff) can be issued by the host whenever the host wants to flow-control the remote. These special
commands make host programming and buffer management easier because it allows the flow-control character(s) to be sent as
the next character, regardless of the contents of the Transmit FIFO or host transmit buffers.

Flow-control characters are transmitted by the send special character command in the Channel Control register (CCR). The
lower-three bits in the command determine which of the four-special characters are to be sent. If two-character flow control
sequences are enabled, requesting either SCHR1 or SCHR2 causes the appropriate two-character sequence to be transmitted.
Refer to Section 7.2.5 on page 70 for Special Character Definition details. Special characters are transmitted regardless of the
state of transmit enable or transmit flow control. Transmitting flow- control characters can be handled independently of the
current state of the transmit channel. In sending special characters, the CD1865 bypasses any data already in the Transmit
FIFO, thereby minimizing delay in transmitting flow-control characters. The maximum delay is two-character times.
However, if a break is currently being transmitted, the CD1865 waits for the break transmission to terminate before the
special character is transmitted, regardless of the length of the break.

The CD1865 keeps a copy of the current state of the receive flow in the CCSR. Two bits are used to indicate the current state of
the channel regarding flow control: RxFloff and RxFlon. RxFloff and RxFlon are meaningful only when the CD1865 is flow-
controlling the remote. Whenever an Xoff is transmitted, RxFlon is cleared and RxFloff is set. When a subsequent Xon is
transmitted, RxFloff is cleared and RxFlon is set. When data is received from the remote, RxFlon is cleared.

The ‘00’ state is provided as an aid to the programmer in determining whether there might be a problem in a communications
link. If RxFlon remains set during normal operation, it could indicate that the remote did not correctly receive the last Xon.

If flow-control characters are sent by the host by embedding them in the Transmit FIFO rather than using the Send Special
Character function, the CD1865 flow-control logic does not sense them, and the CCSR is not affected.

The table below summarizes the meaning of RxFloff and RxFlon.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 75

7.3.4 Transmitter Flow Control

The CD1865 provides both automatic In-Band (Xon/Xoff) and Out-of-Band Flow Control functions. In-Band Flow
Control recognizes special characters or character sequences for Xon and Xoff control embedded in the data stream. Out-
of-Band Flow Control uses the modem handshake signals, RTS/CTS, to control the flow of data. Both types of flow
control are implemented between the Transmit FIFO and the Transmit Holding register, not between the Transmit
Holding register and the Transmit Shift register. Figure 26 on page 76 diagrams the transmitter flow-control logic.

All automatic flow-control functions are controlled by bits in Channel Option register 2 (COR2), except DTR threshold,
which is controlled by Modem Change Option register 1 (MCOR1). Channel enable and flow-control status is stored in
the Channel Control Status register (CCSR). A TxEn bit shows the enabled status of the channel’s transmitter. Two bits,
TxFloff and TxFlon, are used to indicate the current state of the channels’ flow control.

Once the Automatic Flow-Control Modes are invoked by the host, all actions are transparent to the host. If receipt of
flow-control characters by the host is not required, the Flow-Control Transparency bit of COR3 may be set to not pass
received flow-control characters onto the host. If TxIBE is set, the CD1865 implements the flow-control function on the
transmitter regardless of the FCT mode. The host can review the status of the channel by reading the Channel Control
Status register.

If flow-control status is needed by the host, the SCDE and RxSC Control bits must be set and the FCT bit must not be
set. A special character detect status and the special character is presented to the host by a Receive Exception Service
Request. If the host wishes to manually flow-control the transmitter, it can do so by using the TxEn bit, which stops
transmission after the current character completes.

RxFloff RxFlon Meaning

1 1 Illegal mode.

Xoff is last flow-control character sent
1 0

(flow off).

Xon is last flow-control character sent
0 1

(flow on).

0 0 Flow is on, data has been received.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 76 Datasheet

7.3.5 Transmitter Hardware (Out-of-Band) Flow Control

Transmit Out-of-Band Flow Control is performed automatically by the CD1865 by the CTS* pin, if the CTS Auto Enable
(CtsAE) mode is enabled in bit 1 of COR2. In this mode, before a character from the FIFO is transmitted, the CTS* pin is
tested, and, if inactive, transmission is delayed. Since flow control is implemented between the FIFO and the Transmit
Holding register, when CTS* is negated, it is possible to get both the current character being sent and the character in the
Transmit Holding register.

However, the Send Special Character Command (that is, Xon and Xoff) overrides CTS* inactive. This is generally preferred;
however, in some applications sample CTS* or CD* before sending a special character.

To complete the handshake with a remote device, an RTS Automatic Output (RtsAO, bit 2) mode is also provided. This causes
the RTS pin to be asserted throughout any data transmission: normal, break, and special characters. The RTS pin is activated
whenever there is data in the FIFO and transmitter registers. It is held active until after the last Stop bit of the last character is
transmitted.

7.3.6 Transmitter Software (In-Band) Flow Control

The CD1865 transmitter can be programmed to respond automatically to flow-control characters received by the receiver.
This feature requires no host assistance and substantially reduces host processing requirements. If this Automatic mode is
enabled, when the remote unit transmits an Xoff character to the CD1865 (to prompt the CD1865 to suspend transmission),
the CD1865 terminates the transmission. The CD1865 may require approximately 500 microseconds (~2 character-times at
38.4 kbps) after receipt of the Stop bit to recognize that the character it has

Figure 26. Transmitter Flow-Control Logic

TRANSMITTER

FIFO

TRANSMITTER HOLDING REGISTER

TRANMSITTER SHIFT REGISTER

FULL/
EMPTY

BIT

BACKGROUND CODE:

FIFO-TO-H.R. TRANSFER, FLOW

CONTROL, OTHER FEATURES

(POLLING LOOP)

FOREGROUND CODE:

BIT DISASSEMBLY, H.R.-

TO-S.R. TRANSFER

(INTERRUPT-DRIVEN)
RTS

OUT
CTS

IN

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 77

received is a flow-control character and set its internal flag to stop transmission. Transmission actually stops as soon as
the characters in the Transmit Shift register and Transmit Holding register are shifted out.

To enable In-Band Flow Control, two bits must be set. First, the Special Character Detection
(SCDE) must be enabled by bit 4 of Channel Option register 3 (COR3). This causes all error-free received data to be
compared for a match with the Special Character registers (SCHR1–4). Second, flow control is enabled by Transmit In-
Band Enable (TxIBE, bit 6) of COR2, the special characters are interpreted as flow-control characters.

Different flow-control protocols use either single- or two-character sequences for the Xon and Xoff functions. For single-
character flow-control sequences SCHR1 is used as Xon, SCHR2 as Xoff, and SCHR3-4 as normal special detect
characters. If two-character sequences are enabled, by XoffCH and XonCH (bits 6 and 7) of COR3, SCHR1 and SCHR3
form the Xon sequence and SCHR2 and SCHR4 form the Xoff sequence.

Many operating systems allow users to define their own terminal’s flow-control settings independently. The CD1865
allows flow-control characters to be programmed on a per-channel basis.

The FCT bit controls whether flow-control characters are passed on to the host. When the CD1865 receives a flow-
control character or character sequence and FCT is a ‘0’, it starts or stops the transmitter as required, and passes the
character on to the host as a Receive Exception Service Request. Since there is a one-to-one correspondence between the
Status FIFO and the Receive Data FIFO, the flow-control character detected is stored in the Receive Data FIFO, and a
status byte, indicating special character detect, is stored in the Status FIFO.

If the FCT bit is a ‘1’, the CD1865 still starts or stops the transmitter as required, but the character is discarded, and no
exception is posted. In either case, the flow-control status of the transmitter (on or off) is maintained by the CD1865 in the
Channel Control Status register (CCSR).

If flow-control characters are passed to the host, they are marked as special characters 1 or 2 in the Receive Channel
Status register (RCSR). If a two-character sequence is detected, it is compressed to the second character and a status
indicating a match of the first character is set. A valid two- character sequence requires that both characters be received
without error. If an error occurs on the second character, the first character is treated as a normal character, and the
second character is reported as an error by a Receive Exception Service Request.

Bits affecting flow control are summarized in the table below:

Bit Name Register Function

SCDE COR3 Enables Special Character Recognition

TxIBE COR2 Enable Automatic-transmitter Flow Control

FCT COR3 Sets Transparency mode of flow control

IXM COR2 Sets implied Xon mode

 XonCH XoffCH Xon Xoff
 0 0 SCHR1 SCHR2

 0 1 SCHR1 (SCHR2 and SCHR4)
 1 0 (SCHR1 and SCHR3) SCHR2
 1 1 (SCHR1 and SCHR3) (SCHR2 and SCHR4)

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 78 Datasheet

The remote device can signal the CD1865 to resume transmission in one of two ways depending on the setting of the
Implied Xon mode (IXM) option bit COR2. When the IXM bit is set, the CD1865 resumes transmission upon receipt of
any character, for example, each character is an implied Xon. In Implied Xon mode it is assumed that if the remote is
capable of transmitting data, it is able to receive as well. If a character is treated as an implied Xon, no special status is
recorded in the RCSR, and the TxFlon bit is not set in the CCSR. An implied Xon character is not stripped if flow-
control transparency is enabled.

When the IXM bit is not set, the CD1865 only resumes transmission upon receipt of an Xon character. In addition, the
host may force a resumption of transmission by issuing a Transmit Enable Command, which clears the TxFloff bit. The
Xon and Xoff characters or character sequences are equal in a Toggle mode. There is no special bit to enable this mode.
The CD1865 detects this mode whenever the Xon character equals the Xoff character, and it implements Toggle mode
automatically

In Toggle mode, whenever the special character is received, the current state of flow control is toggled. If flow control
transparency is set, the character is dropped. If not in flow-control transparency, the character is passed to the host. If it is
a single character, the special character status is ‘1’ and the character is put in the Receive Data FIFO. In two-character
sequence, the second character is placed in the Receive Data FIFO along with special character ‘1’ in the Status FIFO.

The TxFloff and TxFlon bits indicate channel status when the remote device is flow-controlling the CD1865 transmitter.
When the remote requests the CD1865 to stop transmission, the CD1865 sets the TxFloff Status bit in the CCSR. If
TxFloff is set, the last flow-control character received was a flow-off. When the remote sends an explicit flow-on
character, the CD1865 clears the TxFloff bit, and set the TxFlon bit. (If flow is resumed because of implied Xon, TxFloff
is cleared, but TxFlon is not set). When the CD1865 resumes transmission, the TxFlon bit is cleared. Transmit Flow
Status bits is also cleared by enabling or disabling the transmitter or resetting the channel.

This is summarized in the table below:

7.4 Modem Signals and General-Purpose I/O

Each channel of the CD1865 has four pins that can be used either as modem-control or general- purpose input/output
pins. The modem signal names assigned to these four pins have been chosen to provide an easy reference for systems
designers. In fact, they are all simply general purpose inputs and outputs (if automatic Out-of-Band Flow Control is not
used) that can be individually controlled by the modem signal value register(s). Since they are general purpose, system
designers may choose to connect the pins in any way that suits the application.

TxFloff TxFlon Meaning

1 1 Illegal

1 0 Transmitter is flow-controlled off

0 1 Transmitter on, no data sent yet

Transmitter on, CD1865 has sent data, or implied Xon has
0 0 occurred. This is also the ‘normal’ state of these bits when flow

control is not being used

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 79

However, when the system software design chooses to make use of the automatic Out-of-Band Flow Control with the
pins, then the signal naming convention no longer holds true in some cases, depending on whether the device is used as
DCE or DTE. In this case, it is best to think of the pins in terms of their actual uses within the CD1865 and connect them
accordingly, without regard to their names. The RTS* and CTS* pins are associated with the transmitter and the DTR*
and DSR* pins are associated with the receiver. The table below shows Intel’s recommended signal hook-up if automatic,
Out-of-Band Flow Control is required.

For example, if the CD1865 is designed to be a DCE and automatic Out-of-Band Flow Control is required, the pin
labeled DTR should be connected to remote CTS input. If the CD1865 is to be used as the DTE side, then the CD1865
CTS output would be connected to the remote CTS input.

Note that if automatic Out-of-Band Flow Control is implemented, the activity of DTR and DSR pins do not implement
the function assigned to those signal names by the signalling conventions of the CCITT and other standards organization.
These names would only apply to these pins if they are under program control and not under automatic CD1865 control.
In fact, the ‘DTR’ function, as defined, enables the modem to go on- and off-line, depending on the state of the pin. If
automatic control is used, then DTR would go inactive when the receive FIFO reached the programmed threshold thus
causing the modem to drop the connection (carrier) to the remote, which would not be the correct function. Refer to
Section 7.3 for details on operation of modem pins in flow-control applications.

Modem pins are implemented as I/O ports accessible by either the CD1865 processor or the host. The modem pins are
not connected directly to the transmit or receive hardware. When a user programs out-of-band modem functions to be
active, the CD1865 processor reads from and writes to these pins. Specifically, when RTS* and CTS* are being used for
transmit flow control, the CD1865 processor asserts RTS* and senses CTS*, as required. Likewise, when configured to
do so, the Receive FIFO negates DTR* when full. The host should not be allowed to re-assert it inadvertently. The host
is not ‘locked out’ of accessing these bits; care should be taken so that these bits are not written to, causing the system to
malfunction.

The user has direct control over the RTS* and DTR* Outputs and can sense the state of CTS*, CD*, and DSR* Inputs
through the Modem Signal Value register (MSVR). Since the host is accessing these pins directly, there is no delay in the
host's ability to detect a level change. DTR* and CD* depend on the state of the DTRSEL input.

DCE DTE CD1865 Pins Out-of-Band Flow Control

CTS DTR Signal remote to transmit

RTS Not implemented in this direction

RTS RTS Request remote permission to transmit

CTS CTS Enable transmitter

Modem
Control Pins

Function

RTS* Request to Send (general-purpose output)
CTS* Clear to Send (general-purpose input)

DTR* Data Terminal Ready (carrier detect/general-

purpose input/output)

DSR* Data Set Ready (general-purpose input)

CD* Carrier Detect (general-purpose input)

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 80 Datasheet

When the CD1865 is programmed to detect level changes and generate service requests when level changes occur, it does
so in firmware by reading the pins and comparing to a previously stored value. This function is performed in the main
timing loop of the firmware; the maximum time required to detect a level change under worst-case conditions is
approximately 2 ms. When the CD1865 is performing this function, the modem pins are periodically sampled rather than
continuously monitored; as such they have very little sensitivity to noise, which is desirable in data communication
applications. However, in extremely noisy applications, re-read a modem line which has caused a Modem Signal Change
Service Request to verify that it has indeed changed and is not merely malfunctioning. This eliminates even the slight
possibility of a noise pulse causing erratic operation.

When the CD1865 is monitoring modem pins to control transmit or receive functions, it does not rely on the previously
stored value, but checks the pins at the appropriate time. Thus, there is very little delay in this response. For example,
before deciding to transmit another character, it examines the CTS* pin at that time. (The CD1865 makes this decision
when moving characters from the FIFO to the Holding register, not from the Holding register to the Shift register.) Refer
to Section 7.3 on page 72 for flow-control details.

Note that the logical sense of the modem bits is inverted; for example, writing a ‘1’ to the MSVR
causes the output pin to go to nominal zero volts. Likewise, a low-voltage input is sensed as a ‘1’.

7.4.1 Generating Service Requests with Modem Pins

The CD1865 can generate service requests when any one of the input pins changes state. Either or both edges may be
detected by setting bits in the two Modem Change Option registers (MCOR1 and MCOR2). For each pin, the user can
individually enable on-to-off or off-to-on transition detection of the inputs. When the CD1865 detects such a transition, it
sets the corresponding bit in the Modem Change register. If the corresponding bit in the channel’s set, the CD1865
asserts its * output. The user must clear the Modem Change register during the service request service routine before
writing to the.

The CD1865 performs this task by reading the modem input signals and comparing the current value with the value read
in the last pass through the outer scanning loop. Because this is the lowest-priority event in the CD1865 scanning loop,
changes may not be detected unless they are several hundred microseconds long. Modem Input pins can be used for
purposes such as detecting the closing of a switch. However, the relatively slow speed of response should be taken into
account when using Modem Input pins for this purpose. The CD1865 does not latch the Modem input signals.

7.4.2 Using Modem Pins as General-Purpose I/O

Since the modem pins can be directly accessed by the host, they can be used as general-purpose I/O pins if they are not
needed for flow control or modem interfacing. Simply read from and write to them as any I/O port.

7.5 Testing the CD1865 — Loopback Tests

The CD1865 performs a basic internal self-test whenever it is reset. This test provides a reasonable degree of confidence
that the CD1865 is functioning satisfactorily. There are two additional tests that can be performed by the user to further
ensure complete functionality. These two test modes

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 81

are Local and Remote Loopback. Used together with diagnostic firmware in the host system, the Loopback Modes
provide very thorough test coverage of all CD1865 functional blocks: the CD1865 processor, ROM, RAM, bus interface,
transmitters/receivers, and random logic.

Local Loopback Mode

Local Loopback mode is a ‘silent’ loopback, for example, data being sent by the transmitter is internally connected to the
receiver without reaching the external TxD pin. Generally, this is advantageous because it allows diagnostic software to
operate without causing unwanted effects on any remote device that may be connected to the serial line. During local
loopback, the TxD pin is in the ‘mark’ (a logic ‘1’) state. If non-silent loopback is also needed, it can be easily
implemented externally with an AND gate or a jumper plug on the serial connector.

Local Loopback mode is invoked by setting the LLM bit in the Channel Option register 2 (COR2) and then issuing a
channel command to tell the CD1865 that COR2 has changed. When in this mode, the channels TxD Output is internally
looped back to the channel’s RxD Input. However, all other channel parameters including modem pins continue to work
independently and normally. Receive special character recognition, overflow handling, and other options may be tested by
using the Local Loopback mode and transmitting the appropriate character sequences. As shown in Figure 27 on page
82, the loopback connection is directly from the TxD signal to the RxD signal, for example, all transmit and receive
logic is tested except the actual I/O buffers.

Remote Loopback Mode

Remote Loopback mode is provided to support testing of devices connected to the serial lines. Remote Loopback is
invoked by setting the RLM bit in the Channel Option register 2 (COR2). When in this mode, the CD1865 echoes the
received data to the transmitter for transmission back to the sender. The received data is not passed on to the host.

When in Remote Loopback mode, the transmitter continues to run as defined by its own Baud Rate registers, not the
values being used by the receiver. The CD1865 receives a complete character, strips off Start, Stop, and Parity bits, and
then re-transmits it with Parity, Length, and Stop bit Output options as defined in COR1. Thus, it is possible to change
baud rate. However, this can result in receiver overflow. In general, when programming for Remote Loopback
Operation, the Transmit bit rate should be as fast or slightly faster than the expected receive rate to avoid possible overrun
and loss of data. The number of Stop bits should be set to a one, rather than one-and-a-half or two, if the application
permits it. This ensures that the effective transmit rate is faster than the receive rate.

As shown in Figure 27, Remote Loopback is done at the character level and not the bit level. The Receive and Transmit
FIFOs are not used in Remote Loopback. Characters are transferred directly from the Receive Holding register to the
Transmit Holding register. For a diagnostic mode that tests the FIFOs, other logic is needed to be implemented by
programming the host system to transfer received characters from the Receive FIFO to the Transmit FIFO. This permits
full testing of FIFO thresholds, service request logic, special character operation, and so on.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 82 Datasheet

Figure 27. Local and Remote Loopback Logic

TRANSMIT SHIFT REGISTER RECEIVE SHIFT REGISTER

TRANSMIT HOLDING REGISTER LOCAL LOOPBACK SWITCH
RECEIVE HOLDING REGISTER

REMOTE LOOPBACK SWITCH

TRANSMIT FIFO RECEIVE FIFO

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 83

8.1 Types of Registers

The CD1865 contains three types of registers:

• Global registers — registers not specific to a particular channel

• Indexed Indirect registers — special registers that are mapped to unique functions

• Channel registers — registers specific to each channel

Global Registers

Global registers contain information common to all channels. They are used primarily for passing vectors and setting-up
service request handling.

Indexed Indirect Registers

Indexed Indirect registers are special registers that either point to the FIFOs or signal the end-of- service request
processing. The Indexed Indirect registers are used primarily to transfer data to and from the serial channel FIFOs. Such
transfers can be done only during a service request. When service requests are being serviced by the host, a context-
switching technique is used by the CD1865 that reduces the number of cycles needed by the host to transfer data to and
from the CD1865. The CD1865 makes available to the host all the registers pertaining to the channel requesting service
by mapping them through to the Indexed Indirect register addresses. This removes the burden, of keeping different
addresses according to which channel is being accessed, from the host.

FIFO information is channeled through either the Receive Data register, the Receive Character Status register, or the
Transmit Data register of the Indexed Indirect register set. Use of the Indexed Indirect registers is valid only during
appropriate service requests; the Transmit Data register can be accessed during Transmit Service Requests, but not
during Receive or Modem Service Requests. The Channel Access register’s (CAR) content is left unchanged from the
value last set by the user, but it is not used in a service request context. The CAR should not be modified during a service
request. During a service request, only access the channel that has caused the service request to be issued (as defined by
the Global Interrupting Channel register).

Channel Registers

Channel registers are used to store parameters specific to each channel, such as bit rates, special character processing,
and modem options. When not actively involved in a service request, each channel can be accessed at any time,
independently of the other channels. Channel registers can be accessed by first writing the number of the channel to be
accessed into the Channel Access register. The channel number in the CAR is used by the CD1865 as part of the Channel
register Address.

Individual CD1865 registers are addressed by a seven-bit address contained in Address Bus bits A6-A0. Address bit A6
set to a ‘1’ selects the Global registers, and when set to a ‘0’ selects the Channel registers. When the CD1865 is not in a
service request context, the active channel is defined in the CAR. The contents of the CAR then become part of the
Address Field (along with A0–A5) needed to access the Channel register file.

8.0 Programming

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 84 Datasheet

Off-Limit Registers

The CD1865 communicates to the host by shared access to its on-device RAM. Of the 128-byte locations in the CD1865
address range, only 41 locations are defined as registers available to the host. The rest are used by the CD1865 for
internal variable storage. Users should not access these registers since it can cause the CD1865 to malfunction.

8.2 Access Duty Cycle

The host access to the CD1865 appears to be a simple static read or write cycle, but the actual access occurs by
arbitrating for the local (on-device) bus and ‘stealing’ one-bus cycle. This is completely hidden from the user in normal
circumstances, and successive accesses to the CD1865 may be done ‘back-to-back’ with no delay. However, if the host
were to repetitively read from (or write to) the CD1865 as fast as possible over many cycles, enough CD1865 internal
bus cycles would be ‘stolen’ that the CD1865 processor might not be able to keep pace with its processing. This situation
could only occur if the host was continuously testing a bit while waiting for it to change state. If there is a requirement to
do something similar, insert a delay in the host code so that the net-duty cycle of accesses is less than ten percent. This
limitation applies only when the CD1865 is sending and receiving data on one or more channels. When initializing or re-
configuring a channel, these registers can be written to at a fast pace.

8.3 Accessing FIFOs Versus Other Registers

The FIFO storage array is under the control of the CD1865 at all times. This is necessary to ensure that the FIFO is
available for the CD1865 processor to access whenever needed. During normal operation, the CD1865 processor sets the
FIFO pointers to the value required to transfer data, regardless of the value placed in the Channel Access register (CAR)
by the user. Therefore, the user cannot access the FIFOs in this manner.

FIFOs can only be accessed in the context of an active Service Request. At this time only the CD1865 processor causes
the FIFO pointers to be set to the appropriate value for the channel being serviced. FIFOs are then accessed by the
Indirect Indexed registers.

8.4 Initialization

The CD1865 initialization begins with a mandatory hardware reset applied through the active-low RESET* Input. The
system Clock (CLK) Input must be active during the hardware reset, and the reset duration must be at least five clock
periods. It is not necessary to synchronize RESET* Input with CLK. Refer to Figure 28.

Immediately following the hardware reset, the CD1865 goes through a firmware initialization, reaching an Idle mode

within 500 µs. This can be verified by the host by reading the Global Service Vector register and finding its contents to
be FF Hex. Upon internal reset completion, the user can then configure the CD1865 for the required channel functions.

A software reset can be performed by setting certain bits in the Channel Command register (CCR). Setting bits 7 and 0 to
a ‘1’ resets all channels. This is done by forcing the CD1865 processor to jump to the same power-up sequence that it
uses upon hardware reset. Whether the reset is caused

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 85

by hardware or software, the CD1865 does not initialize every register and RAM location to a defined value. The only
sure state is that all channels are inactive, no service requests are pending, and the Global Interrupt Vector register is FF
Hex.

Figure 28. Initialization

MASTER
CHIP
RESET

INITIALIZATION

GSVR

= FF

?

N
After either a hardware reset by the RESET pin or a software reset
by a CCR command, wait until the GSVR= xFF before proceeding
with chip initialization.

GLOBAL
INITIALIZATION

Y

LOAD GSVR WITH CHIP ID,

PILRS WITH VECTORS, AND

PRESCALE REGISTERS

LOAD CAR WITH A ‘0’

When the CD1865 is ready, begin by loading the GSVR with the

chip ID if there are more than one CD1865 in the system. Load

the Service Match registers with the vectors that will be used during

service acknowledge cycles. Load the Prescale registers with the

value chosen for the basic time count for timer operations.

In preparation for channel initialization, load the CAR with a ‘0’ to
access Channel Zero registers.

CCR
= 0
?

Y

N
for the CCR to contain a value of zero to ensure that the CD1865
is not processing a previous change command for that channel.

LOAD COR1-3 WITH
CHARACTER SETTINGS
AND OPERATION MODES

Load the Channel Option registers with the values to enable the
desired modes of operation and character parameters such as
parity, stop bits, and so on.

ISSUE COR CHANGE
COMMAND IN CCR

Inform the CD1865 that one or more Channel Option registers
have changed via the COR Change Command.

CHANNEL
INITIALIZATION

LOAD SCHR1-3, MSVR,
MCOR1-2, TRANSMIT/RECEIVE

INCREMENT CAR

Option registers for modem interrupt conditions; the MSVR with the

states of DTR/RTS as necessary and the baud rate constants for
Transmit and Receive Baud Rate Generators. Set the appropriate

bits in the SRER register for the interrupt conditions desired.

LAST
CHANNEL
(CAR=8)

?

N If more channels, go back to the top of the loop.

Y
DONE

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 86 Datasheet

8.5 Global Register Initialization

The user must initialize the CD1865 by programming the following Global registers before starting normal operations on
the ports — Prescaler Period registers, the Global Interrupt Vector register, and the three Service Match registers ().

8.6 Service Request Initialization

To prepare the CD1865 for service requests the following registers must be initialized:

• Global register (GVR)

• three Service Match registers ()

• Global Channel registers (GCR)

The Global Vector register consists of five bits of user-supplied information, and three bits of CD1865–supplied service
request group information. This concatenated vector supplied by the CD1865 during a service-request-acknowledgment
cycle directs the host to the proper service request subroutine. The host writes the five MSBs into the GVR during
initialization. These five bits can be either a device ID number or an appropriate code for handling service request. In
multiple-cascaded CD1865 applications, these five bits must have a unique value for each CD1865 to identify which
CD1865 is responding to a service request cycle.

Three registers in the Global register set — Modem Service Match register (), Transmit Service Match register (), and
Receive Service Match register () store the service request values for the three types of service requests. These levels are
used to match with the value that appears on the address bus during a service-request-acknowledgment cycle. Since
these levels are system dependent, the user must initialize these registers with the proper values.

The following three registers provide the channel number of the channel requesting service — GCR1, GCR2, and
GCR3. Reading any of these registers causes the CD1865 to ‘mask-in’ three bits specifying the channel number of the
currently active channel. Normally these registers are read by the host when it is handling a service request. In this case,
the three bits are the number of the channel requesting service. If any of the three GCR registers are read when the
CD1865 is not in a service request context, the three bits are the current value in the CAR.

Bits 4:2 are masked into the contents of these registers by the CD1865 when it is read by the host. The actual contents of
the register are not modified.

8.7 Prescaler

The Prescaler Period register (PPR) determines the fundamental ‘tick’ rate for all CD1865 on- device timers, the
Receiver Data Time-out and Transmitter Real-time Delay Timers. The PPR counts Clock (CLK) periods, and the
minimum PPR value used must guarantee a ‘tick’ length of

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 87

not less than 1.0 milliseconds. As shown in the Internal Operation Flow Chart, Figure 4 on page 25, processing timer events is in
the outer (lowest priority) loop of the CD1865 firmware. A timer tick that is too short may result in two ticks occurring within
one pass through the outer loop; this would result in missing one tick. This is not fatal, but it would result in inaccurate timings.

8.8 Channel Initialization and Change

Prior to enabling the individual channels, program the Channel registers with required channel options and parameters such as
character lengths, parity type, Receive FIFO thresholds, modem signal detection levels, bit rates, and so on. When ready to
begin, enable service requests.

Channel initialization is accomplished by first writing to the CAR register with the number of the channel to be programmed.
This channel number automatically becomes part of the address for subsequent channel register programming. The host can use
the same set of register addresses for all channels, thus eliminating the need to calculate addresses.

Certain channel options are controlled by the three Channel Option registers. All changes to the
Channel Option registers must be accompanied by setting the appropriate Channel Option register
‘changed’ bits in the Channel Command register (CCR). The CD1865 processor regularly samples the CCR for any value that is
not a ‘0’. If the CCR is not a ‘0’, the CD1865 decodes the command or commands, acts on them, and clears the CCR to signify
completion of the commands. New commands must not be issued until any existing commands have been completed.

8.9 Transmitting Data

When transmitting data, a service request is received when the Transmit FIFO is empty. The number of the channel requesting
service (for example, the one with the empty FIFO) is available from the GCR. If there is more data to be sent, transfer up to 8
bytes to the FIFO. If no data is available, disable the channel. The easiest way to accomplish this is by clearing the appropriate
bit in the Enable register (). When new data is available, re-enable the channel by the , and a new service request for transmit
data is received. At that time, transfer the data to the FIFO. Channels can be enabled or disabled by giving enable and disable
commands by the Channel Command register (CCR), but it is a slower process.

In some cases, it is necessary to know when a channel has sent the last bit of the last character rather than an empty FIFO. One
example would be when changing bit rates. Two bits in the Enable register (), TxMpty and TxRdy, control the exact conditions
for generating a service request. TxRdy indicates when the FIFO is empty, and TxMpty indicates when the last bit has been sent.
It is acceptable to have both bits set but proper operation is achieved by switching from the FIFO empty status to the transmitter
empty status when it is necessary to know that all data has been completely sent. If they are set, the FIFO Empty Service
Request always occurs first. If there is no more data to be sent, the Transmitter Empty Service Request is received later, but in the
mean time, FIFO empty requests may also be received. Once the last bit of the last character has been sent, a channel can be
reconfigured.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 88 Datasheet

8.10 Receiving Data

When receiving data, a service request is sent (for Good Data) when either the number of received bytes meets the
threshold level, the Receive Time-out expires, or there is Good Data followed by a Receive Exception Condition (the
CD1865 must transfer all the Good Data before giving the Exception). In all cases, the service-request routine reads the
channel number requesting service (from GCR) and the number of bytes available (which can be more, the same, or less
than the number set as the threshold) from the Receive Data Count register (RDCR), and proceeds to transfer that many
bytes, if possible.

It is not necessary to transfer as many bytes as are available or any bytes at all. If the host’s buffer is nearly or completely
full, the host can accept only those bytes it has room for, disable Receive Service Requests, exit the Service Request
Routine, process the buffer, enable Receive Service Requests, and wait for the next service request. If no bytes are
transferred during a Receive Service Request, and Receive Service Requests are still enabled, the CD1865 immediately
re-requests service because the internal conditions that caused the request to be issued are still true. The host may either
disable service requests or suspend host service request processing; however, both of these options should be
implemented carefully as suspending service requests may result in an overflow condition if the suspension lasts too
long.

8.11 Programming Examples

When writing programs for the CD1865 evaluation board, a few guidelines should be followed to keep the programs
from getting lost or error conditions to be encountered. This section discusses some programming errors and ways to
avoid them.

8.11.1 Programming the Service Match Registers

One common programming error is made when using the CD1865 in the area of Service Match registers (SMR). The
value placed in these three registers during chip initialization must exactly match the value that is present on the address
inputs A0–A6 during the service acknowledge cycle. (When the ACKIN* control signal is activated.) If this condition is
not met, the CD1865 does not respond with a DTACK* to terminate the bus cycle. This causes the system to hang.

8.11.2 CD1865 Initialization

Initializing the CD1865 is simple and quite straight forward. This section presents some guidelines for the sequence to
write to the various registers to correctly complete the initialization process. Refer to Section 8.4 on page 84 for a flow-
chart style description of the process.

The first step in the initialization process is to issue a master reset command to the CD1865 internal logic. This can be done
in one of the two ways: throughout the use of the RESET* control signal at the hardware level, or via the chip reset
command at the software level. The software reset command is issued by placing a value of x’81 in the CCR register.
Internally the chip reset command does the same thing as activating the RESET* control input. The internal micro-code
enters the exact same routines to setup the chip for operation. When the reset command has been issued, the program
must wait until the GSVR has a value of x’FF. Until this value is placed in the GSVR by the micro-code, the CD1865
initialization procedures are not complete.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 89

The next function to be performed is global initialization. These steps set up the chip ID for the CD1865, the Service
Match registers (SMR) for the three service request levels and the Prescaler Period register. The SMR should be
programmed as discussed previously (Section 8.1). The Prescaler Period register value (high and low) sets the basic time
scale for internal timer operation, such as the receiver time-out period. A value must be chosen that yields a timer period
of no less than 0.1 ms.

Following global initialization, each channel must be programmed for the desired mode of operation, including the
transmit and receive baud rate divider constants, the individual character settings such as parity, bits per character, and
number of Stop bits. Receive FIFO threshold levels, special character values, modem output signal levels and interrupt
conditions. Before beginning the process of channel initialization, the CAR register must be loaded with the number of
the register to be worked on. One important point to remember is that before placing a new value in any of the COR
registers or issuing the COR change command, the CCR must be checked to be sure that it has a value of zero. If it is not
zero, then the CD1865 may be processing a previous CCR command and the CCR and the CORs must be changed.

If the program is ready at this point to respond to interrupts then the appropriate interrupt condition bits for transmit and
receive can be set in the SRER, and the transmitter and receiver can be enabled by command to the CCR.

The following sections explain the initialization sequence.

Global Initialization

Use Set_Byte to write to the register, and Read_Byte to read the register content. For details on the
two functions, refer to the following basic I/O operations.

Set_Byte(GSVR, 0x00); // Clear GSVR for chip reset

Wait_CCR(); // Confirm CCR is clear

Set_Byte(CCR, 0x81); // Reset all Command

Wait_GSVR(); // wait to be FF

Set_Byte(PPRH, 0x80); // Set up Timer Prescaler (High)

Set_Byte(PPRL, 0xe8); // Set up Timer Prescaler (Low)

/*---

/* set up the Service Match Register according to the decoding ACKIN value

/* In this case, we decoded to be 0x8x.

/*---*/

Set_Byte(RX_SMR, 0x8a); // Set Service Match reg.

Set_Byte(TX_SMR, 0x85);

Set_Byte(MDM_SMR, 0x81);

the hardware acknowlegement.
// comment out the following line if is using

//Set_Byte(SRCR, 0x40); // Set up the software interrupt acknowledge

Channel Initialization

Set_Byte(CAR, chan); // Setup channel access register to be the

// Specified channel number.

Set_Byte(COR1, 0x03); // No parity, 8-bit char, 1-stop bit

Set_Byte(COR2, 0x00); // Disable all COR2 functions

Set_Byte(COR3,0x35); // Special char detection, FCT

Wait_CCR();

Set_Byte(CCR, 0x4e);

Set_Byte(SCHR1, 0x11); // XON defined (cntl-Q 0x11)
Set_Byte(SCHR2, 0x13); // XOFF defined (cntl-S 0x13)
Set_Byte(SCHR3, 0x11);

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 90 Datasheet

8.11.3 Basic I/O Operations

All the example routines for accessing and programming the board resources are written in Borland C++, but can be
easily ported to other languages. Specific device programming is not included in this document; refer to the device data
book for general programming information.

Read_Byte routine is used to read a register within the CD1865. The sequence is shown below:

// Read the content of assigned register unsigned char

Read_Byte(unsigned char addr)

{

return (inportb(BASE_ADDR+addr));

}

Set_Byte routine is used to write to the register and is a similar operation as the Read_Byte.

// Set the content of assigned register

void Set_Byte(unsigned char addr, unsigned char data)

{

outportb(BASE_ADDR+addr, data);

}

8.11.4 Interrupt Response Operations

The CD1865 evaluation board generates a single interrupt to the ISA bus in response to an interrupt from any of the three
possible sources within the CD1865 device. The interrupt sources are from the receive system, the transmit system, or
the modem functions from any of the available channels. This single interrupt can be user selected to any of the three ISA
-bus interrupt sources as described in the configuration section. Note that due to all the interrupt signals being OR’ed
together, the PC motherboard 8259A PIC must be programmed in level sensitive rather than edge- sensitive mode.

Set_Byte(SCHR4, 0x13);

Set_Byte(RTPR, 0x05); // Set timeout value

Set_Byte(TBPRH,0x00); // Set Tx baud rate 115200 (devisor 0x12) at
33 MHz

Set_Byte(TBPRL,0x12);

Set_Byte(RBPRH,0x00); // Set Rx baud rate 115200 (devisor 0x12) at
33 MHz

Set_Byte(RBPRL,0x12);

Determining the Interrupt Source

The host’s response to an interrupt from the board is to call an interrupt service routine that
determines the type of interrupt pending and services the request. The example below shows one
way to perform the interrupt determination using the Interrupt Status register.

while ((int_status = Read_Byte(SRSR)) & 0x15){

// Case of Receiving interrupt
if (int_status & 0x10)
Service_Rx(chan);

// Case of transmitting interrupt
if (int_status & 0x04)
Service_Tx(chan);

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 91

Once the interrupt source has been determined, the request must be serviced by issuing an IACKIN signal to the device
with the preprogrammed PILR match value supplied as the address. A receive interrupt acknowledge cycle might be
written as shown. Immediately following the write to the EOIR register to terminate the current interrupt context, the
8259A must be informed that the service is over. This is done by the simple procedure shown at the end of the interrupt
source determination routine above.

Receive Interrupt Service

if (int_status & 0x02)
Service_Mdm();

 } //while

 outportb(S8259, EOI); /* End of Interrupt */

 outportb(S8259, RDISTAT); /* Next access read the IS Reg. */

 if (!inportb(S8259)) /* while the slave is not serving any int. */

outportb(M8259, EOI); /* issue End of Int. (EOI) to master */

Service_Rx(unsigned char chan)

{
unsigned charchannel, vector, RxCount;

int i;

vector= Read_Byte(0x8a); // perform hardware acknowledge
channel = Read_Byte(GSCR1) >> 2;

RxCount=Read_Byte(RDCR); // RDCR contains the number of byte to be
transfered.

if ((RxCount>0)&&(RxCount<=8))

{

receive

if ((exception_data = Read_Byte(RCSR)) != 0)
// Receive Exception: in this
// Example, we disable receive
// Operation if detected a

// Exception.

{

}

Set_Byte(CAR, chan);
Set_Byte(SRER, 0x00); // Disable receive

else

no

{

// Normal Receive Operation:

// Receive exception.

if (channel==chan){ // Correct Receiving Channel
for (i=RxCount; i>0; i--){

rx_str[rx_ptr]=Read_Byte(RDR);
rx_ptr++;

}//for
}//if
else // Incorrect Receiving Channel

Rx_chan_err = 1;
} // else

} //if

Set_Byte(EOSRR, 0x00); // Set Transmit End of Int Reg. The
Transmit End of // Interrupt Register must be
written to by the

routine to
// Corresponding host interrupt service

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 92 Datasheet

interrupt

return;

// Signal to the CD1865 that the current

// Service is concluded.

}

Transmit Interrupt Service

Service_Tx(unsigned char chan)
{
unsigned char channel, vector,c;
int i;

vector= Read_Byte(0x85); // Perform hardware acknowledge
channel = Read_Byte(GSCR1) >> 2;

if (channel==chan){ // Make sure correct channel
for (i=1; i<= 8 && !quit_tx ; i++){

Set_Byte(TDR, txm_str[tx_ptr[chan]++]);
if (tx_ptr[chan] >= strlen(txm_str)){

tx_ptr[chan] = 0; // Reset the pointer back to the
quit_tx = 1;

}//if
else

}
}//for

Tx_chan_err = 1; // Wrong transmitting channel.

Set_Byte(EOSRR, 0x00); // Set Transmit End of Int Reg.
// The Transmit End of Interrupt Register must
// Be written to by the corresponding host
// Interrupt service routine to signal to the
// CD1865 that the current interrupt service
// Is concluded.

}
return;

Modem Interrupt Service

Service_Mdm()
{

unsigned char channel, vector;

vector = Read_Byte(MRAR); // Software acknowledge using MRAR
//vector = Read_Byte(0x81); // Comment out the previous line, if using

// hardware acknowledge.

channel = Read_Byte(GSCR1) >> 2;
switch(Read_Byte(MCR)&0xe0)
{

case 32: // case of CTS change interrupt
{

printf(" CTR has a changed state. \n");
break;

}
case 64: // case of CD change interrupt
{

printf(" CD has a changed state.\n");
break;

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 93

}
case 128: // case of DSR change interrupt
{

}

printf(" DSR has a changed state.\n");
break;

default:
{

}

printf(" Invalid Modem interrupt detected.......\n");
break;

}

Set_Byte(MCR, 0x00); // Clear the Modem Change register after
// service the modem request.

Set_Byte(EOSRR, 0x00); // Clear the EOSRR register at the end
// modem service routine.

}
return;

8.11.5 Polled Mode Operation

The Polled-mode operation can be used with any type of host CPU, or it can be used in combination
with interrupts to provide a Mixed-mode system optimized for a particular operation. For details
refer to Section 5.5 on page 35.

In the Polled-mode operation, the Service Match registers need to be setup first (TSMR, RSMR,
MSMR) in the channel initialization routine. Once an interrupt is detected, it is acknowledged by
reading the corresponding register depending on the type of interrupt.
while (!((int_status = Read_Byte(SRSR)) & 0x15))

{

}

// waiting for interrupt.
break;

// Case of Receiving interrupt
if (int_status & 0x10)

{

}

Read_Byte(RSMR)
Service_Rx();

// Case of transmitting interrupt
if (int_status & 0x04)

{

}

Read_Byte(TSMR)
Service_Tx();

// case of modem interrupt
if (int_status & 0x02)

{

}

Read_Byte(MSMR)
Service_Mdm();

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 94 Datasheet

9.0 Detailed Register Descriptions

9.1 Register Map Quick Reference

Name Description Access
Binary
Address

Default
Value

Hex
Address
(8 bit)1

Hex
Address
(Intel)2

Hex
Address

(Motorola∗)3
Page

Global Registers

GFRCR Global Firmware Revision Code

Register R/W 110 1011 84 $6B

SRCR Service Request Configuration

4 $D6 $D7 98

Register R/W 110 0110 0 $66 $CC $CD 98

PPRH Prescaler Period Register High R/W 111 0000 FF $70 $E0 $E1 100

PPRL Prescaler Period Register Low R/W 111 000 FF $71 $E2 $E3 100

MSMR Modem Service Match Register R/W 110 0001 0 $61 $C2 $C3 100

TSMR Transmit Service Match Register R/W 110 0010 0 $62 $C4 $C5 101

SSVR Receive Service Match Register R/W 110 0011 0 $63 $C6 $C7 101

Global Vector Register R/W 100

0000 FF $40 $80 $81 102

SRSR Service Request Status Register R 110 0101 0 $65 $CA $CB 103

MRAR Modem Request Acknowledge

Register R 111 0101 80 $75 $EA $EB 105

TRAR Transmit Request Acknowledge

Register R 111 0110 80 $76 $EC $ED 105

RRAR Receive Request Acknowledge

Register R 111 0111 80 $77 $EE $EF 105

GSCR1 Global Channel Register 1 R/W 100

0001 0 $41 $82 $83 106

GSCR2 Global Channel Register 2 R/W 100

0010 0 $42 $84 $85 106

GSCR3 Global Channel Register 3 R/W 100 0011 0 $43 $86 $87 106

CAR Channel Access Register R/W 110 0100 0 $64 $C8 $C9 107

Indexed Indirect Registers

RDCR Receive Data Count Register R 000 0111 0 $07 $0E $0F 108

RDR Receiver Data Register R 111 1000 0 $78 $F0 $F1 109

RCSR Receiver Character Status Register R 111 1010 0 $7A $F4 $F5 110

TDR Transmit Data Register W 111 1011 0 $7B $F6 $F7 111

EOSSR End Of Register W 111 1111 0 $7F $FE $FF 111

NOTES:
1. Hex address for 8-bit processor.
2. Address for Intel-style processor, see the following description.
3. Address for Motorola-style processor, see the following description.
4. $ denotes address value.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 95

Name Description Access
Binary
Address

Default
Value

Hex
Address
(8 bit)1

Hex
Address
(Intel)2

Hex
Address

(Motorola∗)3
Page

Channel Registers

SRER Enable Register R/W 000

0010 0 $02 $04 $05 112

CCR Channel Command Register R/W 000

0001 0 $01 $02 $03 112

COR1 Channel Option Register 1 R/W 000 0011 0 $03 $06 $07 116

COR2 Channel Option Register 2 R/W 000

0100 0 $04 $08 $09 116

COR3 Channel Option Register 3 R/W 000

0101 0 $05 $0A $0B 117

CCSR Channel Control Status Register R 000 0110 0 $06 $0C $0D 118

RBR Receiver Bit Register R 011 0011 21 $33 $66 $67 119

RTPR Receive Time-Out Period Register R/W 001

1000 5 $18 $30 $31 120

RBPRH Receive Bit Rate Period Register

High R/W 011 0001 0 $31 $62 $63 120

RBPRL Receive Bit Rate Period Register

Low R/W 011 0010 0 $32 $64 $65 120

TBPRH Transmit Bit Rate Period Register

High R/W 011 1001 0 $39 $72 $73 121

TBPRL Transmit Bit Rate Period Register

Low R/W 011 1010 0 $3A $74 $75 121

SCHR1 Special Character Register 1 R/W 000

1001 0 $09 $12 $13 121

SCHR2 Special Character Register 2 R/W 000

1010 0 $0A $14 $15 122

SCHR3 Special Character Register 3 R/W 000 1011 0 $0B $16 $17 122

SCHR4 Special Character Register 4 R/W 000 1100 0 $0C $18 $19 123

MCR Modem Change Register R/W 001

0010 0 $12 $24 $25 123

MCOR1 Modem Change Option Register 1 R/W 001

0000 0 $10 $20 $21 124

MCOR2 Modem Change Option Register 2 R/W 001

0001 0 $11 $22 $23 125

MSVR Modem Signal Value Register R/W 010

1000 0 $28 $50 $51 125

MSVRS Modem Signal Value Request To
Send W

MSVDR Modem Signal Value Data Terminal
Ready W

010

1000 0 $29 $52 $53 126

010

1010 0 $2A $54 $55 126

NOTES:
1. Hex address for 8-bit processor.
2. Address for Intel-style processor, see the following description.
3. Address for Motorola-style processor, see the following description.
4. $ denotes address value.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 96 Datasheet

Even though not all of the CD1865 registers are intended to be read/write, there is no hardware mechanism to prevent
the user from writing to them. The registers should, in some cases, not be written to by the host. See the individual
register descriptions for details.

In the register map, the binary addresses are shown relative to the CD1865 address lines. In 16- and
32-bit systems, it is a common practice to connect 8-bit peripherals to only 1-byte lane. In 16-bit systems, the CD1865
appears at every other address, that is, A0 in the CD1865 is connected to A1 in the host. In 32-bit systems, the CD1865
appears at every fourth address, that is, A0 in the CD1865 is connected to A2 in the host. In both of these cases, the
addresses used by a programmer are different than what is shown.

For instance, in a 16-bit Motorola 68000-based system (or other ‘big-endian’ processors), the CD1865 is placed on data
lines D0–D7 that are at odd addresses in the Motorola manner of addressing. The A0 in the CD1865 is connected to A1
of the 68000. Thus, the CD1865 address $40 becomes $81 to a programmer. It is ‘left-shifted’ one bit, and A0 must be ‘1’
for low-byte (D0–D7) accesses.

In a 16-bit Intel system (or other ‘little-endian’ processors), the CD1865 is again placed on data lines D0–D7, but these
are at even addresses. The A0 in the CD1865 is connected to the A1 in the host, but the host’s A0 must be a ‘0’ to access
data lines D0–D7.

Many 32-bit processors have internal logic to ‘steer’ the data to the correct pins regardless of address value. However, if
the processor employed does not, a scheme similar to the one described for 16-bit machines can be used, except that the
CD1865 addresses are shifted 2 bits instead of one.

Table 9. Register Summary (Sheet 1 of 2)

Global Registers

GFRCR Firmware Revision Code

SRCR PkgTyp RegAckEn DaisyEn GlobPri UnFair Reserved AutoPri PriSel

PPRH Binary Value

PPRL Binary Value

MSMR Binary Value

TSMR Binary Value

RSMR Binary Value

GSVR User
Defined

User
Defined

User
Defined

User
Defined

User

Defined IT2 IT1 IT0

SRSR ILV[1] ILV[0] RREQext RREQint TREQext TREQint MREQext MREQint

MRAR Modified Interrupt Vector Provided On Read

TRAR Modified Interrupt Vector Provided On Read

RRAR Modified Interrupt Vector Provided On Read

GSCR1 User
Defined

GSCR2 User
Defined

GSCR3 User
Defined

User
Defined

User

Defined

User

Defined

User
Defined C2 C1 C0

User

Defined C2 C1 C0

User

Defined C2 C1 C0

User
Defined

User

Defined

User

Defined

User
Defined

User

Defined

User

Defined

CAR Reserved Reserved Reserved Reserved A7(0) C2 C1 C0

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 97

9.2 Global Registers

Global registers provide a function common to all channels. There are two groups of Global registers: those that control
the configuration of the CD1865 and those that control service requests/interrupts.

Table 9. Register Summary (Sheet 2 of 2)

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Indexed Indirect Registers

RDCR 0 0 0 0 CT3 CT2 CT1 CT0

RDR D7 D6 D5 D4 D3 D2 D1 D0

RCSR Time-Out SC Det2 SC Det1 SC Det0 Break PE FE OE TDR

 D7 D6 D5 D4 D3 D2 D1 D0

EOSRR Irrelevant Value

Channel Registers

SRER DSR CD CTS RxD RxSC TxRdy TxMpty NNDT

CCR RESET

CHAN

COR
CHNG

SEND SP

CH CHAN CTL D3 D2 D1 D0

COR1 Parity PArM1 ParM0 Ignore Stop 1 Stop 0 CHL 1 CHL 0

COR2 IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE

COR3 Xon CH Xoff CH FCT SCDE RxTH3 RxTH2 RxTH1

 RxTH0

CCSR RxEN RxFloff RxFlon Not Used TxEn TxFloff TxFlon Not Used

RBR Reserved RxD Start Hunt Reserved Reserved Reserved Reserved Reserved

RTPR Receiver Data Time Out Period

RBPRH Receive Bit Rate Divisor Byte High

RBPRL Receive Bit Rate Divisor Byte Low

TBPRH Transmit Bit Rate Divisor Byte High

TBPRL Transmit Bit Rate Divisor Byte Low

SCHR1 Special Character 1

SCHR2 Special Character 2

SCHR3 Special Character 3

SCHR4 Special Character 4

MCR DSRchg Cdchg CTSchg 0 0 0 0 0

MCOR1 DSRzd Cdzd CTSzd 0 DTRth3 DTRth2 DTRth1 DTRth0

MCOR2 DSRod Cdod CTSod 0 0 0 0 0

MSVR DSR CD CTS Not Used Not Used Not Used DTR RTS MSVRTS

 0 0 0 0 0 0 0 RTS

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 98 Datasheet

9.2.1 Miscellaneous Registers

9.2.1.1 Global Firmware Revision Code Register

This register is initialized by the firmware during the power-on reset initialization routine to contain the current firmware
version code of the CD1865.

This register is a RAM location and may be modified by the user. The CD1865 sets it to the defined value only when a
hardware or software reset is performed, and its contents are otherwise ignored. This value can be modified to indicate
the configuration status of the CD1865, or to indicate any other requirement.

9.2.2 Configuration Registers

9.2.2.1 Service Request Configuration Register

This register configures the CD1865 depending on the method chosen for handling service requests. In addition to the
‘traditional’ interrupt-based host interface, writing the appropriate bits in this register provides for software- rather than
hardware-based service request acknowledgments, fixes service request priorities in either of two ways, and controls Fair
Share Interrupt operation. This register preserves compatibility with existing CD1865 software. For this reason, this
register defaults to all zeroes and must be enabled for each new feature as required.

RegAckEn and DaisyEn Bits are related to each other, and perform service-request acknowledgments by accessing
registers within the CD1865 instead of asserting hardware signals.

Service requests are prioritized by four other bits. AutoPri enables the priority scheme; PriSel, GlobPri, and UnFair
determine the specific priority to be used.

Register Name: GFRCR
Register Description: Global Firmware Revision Code Register

Default Value: 84

Access: Read/Write

8-Bit Hex Address: $6B
Intel Hex Address: $D6

Motorola Hex Address: $D7

Firmware Revision Code

Register Name: SRCR
Register Description: Service Request Configuration Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $66
Intel Hex Address: $CC

Motorola Hex Address: $CD

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PkgTyp RegAckEn DaisyEn GlobPri UnFair Reserved AutoPri PriSel

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 99

Bit Description

Bit 7 PkgTyp: This read-only bit indicates the CD1865 package type. This bit always reads back as .

RegAckEn: Enables register-based service-request acknowledgments. If this bit is a ‘0’, register-based
acknowledgments are not accepted. In this case, the results of a read of any of the service-acknowledgment
registers are undefined. This is the default state of RegAckEn, and it ensures compatibility with earlier versions
of the CD1865.

Bit 6

Bit 5

Bit 4

Bit 3

When RegAckEn is enabled, register-based acknowledges allow the user’s software to acknowledge a
service request by reading from a register rather than by driving the external ACKIN* signal. This is
convenient in applications where interrupts are not supported or where polling is preferred. Setting this bit
does not disable the function of the ACKIN* signal.

DaisyEn: Enables daisy-chaining of register-based service acknowledgments. When DaisyEn is a ‘1’, a
CD1865 being addressed with a register-based service acknowledgment (a read occurs from a register-
acknowledgment address) for which it has a pending request, places the contents of the Global Interrupt
Vector register modified by the service type on the data bus.

When DaisyEn is a ‘1’, a CD1865 being addressed with a register-based service acknowledgment, for which it
does not have a pending service request, asserts ACKOUT* to pass the acknowledgment down the daisy
chain. The next CD1865 in the chain monitors the acknowledgment as an ACKIN* acknowledgment. The
Service Request Acknowledge register addresses must be placed in the corresponding Service Match
registers (, , and) as part of the user setup for daisy-chaining of register-based service acknowledgments.

If daisy-chaining of register-based service acknowledgments is not used, the Service Match registers may be
programmed with any address codes that the user finds convenient for use with the ‘normal’ ACKIN* service-
acknowledge mechanism.

If DaisyEn is a ‘0’ and a CD1865 is addressed with a register-based service acknowledgment for which it does
not have a pending service request, it responds by providing an interrupt vector with a modification code of
‘000’. The addressed CD1865 treats this as an interrupt acknowledge cycle, but with passing inhibited, it must
‘take’ the acknowledge with an ACK level of ‘00’ (none of the interrupt types).

RegAckEn must be a ‘1’ to enable register-based service acknowledgments. DaisyEn has no effect on daisy-
chain operation of the regular ACKIN*/ACKOUT* chain.

GlobPri: When AutoPri is used, if GlobPri is set to a ‘1’, the CD1865 prioritizes across multiple CD1865s
sharing REQ () lines. If GlobPri is set to a ‘0’, the CD1865 accepts the acknowledge for the highest priority on-
device interrupt. In both cases, automatic prioritizing is only done on type 1 (normally the modem signal change
type) interrupt acknowledgments through the ACKIN* mechanism or the register-based acknowledge
mechanism.

When using GlobPri and AutoPri, it is possible to use the CD1865 with the three REQ lines wire-OR’ed
together. In this configuration, with any interrupt request asserted, the global values of all requests appears
asserted. GlobPri should be a ‘0’ to force prioritization among the interrupt sources on-device. When no on-
device interrupts are pending, the acknowledgment is subject to daisy-chaining. See DaisyEn description.

UnFair: Fairness Override bit. If UnFair is a ‘0’, normal Fair Share Interrupt control is performed. If UnFair is a
‘1’, the fair bits are all forced to a ‘1’, disabling the Fair Share mechanism. This is useful when the AutoPriority
Option is used, and the different REQ lines are wire-OR’ed together.

Bit 2 Reserved. Must be a ‘0’.

AutoPri: When set, indicates that the CD1865 should prioritize service requests in the manner selected by
the PriSel bit. In conjunction with the GlobPri bit, either local (within the device) or global (across daisy-
chained devices) prioritization is done. With AutoPri set, auto-prioritization is performed only when a type 1
(modem) interrupt acknowledgment is recognized. Acknowledgments of type 2 (transmit) and 3 (receive)
interrupts continue to be unique and specific even with AutoPri set. This offers a form of local override to Auto-

Bit 1

Bit 0

prioritization for Transmit or Receive Service Request when continuing a second-priority service routine. If not
set, the user must indicate the service request being acknowledged by the choice of service request
acknowledge register.

AutoPri x GlobPri => look at REQext to prioritize globally.

AutoPri x GlobPri* => look at REQ to prioritize locally.

PriSel: Prioritized interrupt order option. If AutoPri is set, PriSel selects the highest-priority service request. If
PriSel is a ‘0’, receive requests have the highest priority. If PriSel is a ‘1’, transmit requests have the highest
priority. Modem signal change request priority is fixed at the lowest priority.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 100 Datasheet

9.2.2.2 Prescaler Period Registers (High/Low)

These two registers provide the initialization value for the Timer Prescaler that is clocked by the system clock. This
establishes the clock for the various on-device timers.

The value loaded into these registers must establish a clock period of at least 1.0 msec. For a clock speed of 33 MHz, the
value must be 33,000 (decimal) or larger. The values in these registers are programmed to be FF (Hex) automatically
upon a hardware reset.

9.2.2.3 Modem Service Match Register

This register must contain the value for Modem Signal Change Service Requests that are presented on the Address Bus
A0-A6 by the host to indicate the type of service request being acknowledged when ACKIN* is asserted. This register,
along with the other two Match registers, is compared to the value on the Address Bus during acknowledgment cycles so
that the CD1865 can determine the service request being acknowledged by the host.

Bit 7 must be programmed to a ‘1’. The CD1865 compares all eight bits internally, but there are only seven address lines.
Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7 of the register is compared with a logic ‘1’.

Within any one CD1865, the three Match registers must have unique values. In multiple CD1865 designs where service
acknowledgments are cascaded, all Match registers of the same type (for example, Modem) must have the same value.

Register Name: PPRH
Register Description: Prescaler Period Register (High)

Default Value: FF

Access: Read/Write

8-Bit Hex Address: $70

Intel Hex Address: $E0
Motorola Hex Address: $E1

Binary Value

Register Name: PPRL
Register Description: Prescaler Period Register (Low)

Default Value: FF

Access: Read/Write

8-Bit Hex Address: $71
Intel Hex Address: $E2

Motorola Hex Address: $E3

Binary Value

Register Name:
Register Description: Modem Service Match Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $61
Intel Hex Address: $C2

Motorola Hex Address: $C3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Value

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 101

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of these registers
must be placed in the equivalent Match register so that contains $75.

9.2.2.4 Transmit Service Match Register

This register must contain the value for Transmit Data Service Requests that are presented on the Address Bus A0-A6 by
the host to indicate the type of service request being acknowledged when ACKIN* is asserted. This register, along with
the other two Match registers, is compared to the value on the Address Bus during acknowledgment cycles so that the
CD1865 can determine the service request being acknowledged by the host.

Bit 7 must be programmed to a ‘1’. The CD1865 compares all eight bits internally, but there are only seven address lines.
Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7 of the register is compared with a logic ‘1’.

Within any one CD1865, the three Match registers must have unique values. In multiple-CD1865 designs where service
acknowledgments are cascaded, all Match registers of the same type (for example, Transmit) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of these registers
must be placed in the equivalent Match register so that contains $76.

9.2.2.5 Receive Service Match Register

This register must contain the value for Receive Data Service Requests that are presented on the Address Bus A0-A6 by
the host to indicate the type of service request being acknowledged when ACKIN* is asserted. This register, along with
the other two Match registers, is compared to the value on the Address Bus during acknowledgment cycles so that the
CD1865 can determine the service request being acknowledged by the host.

Bit 7 must be programmed to a ‘1’. The CD1865 compares all eight bits internally, but there are only seven address lines.
Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7 of the register is compared with a logic ‘1’.

Register Name:
Register Description: Transmit Service Match Register

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $62
Intel Hex Address: $C4

Motorola Hex Address: $C5

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 Binary Value

Register Name:
Register Description: Receive Service Match Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $63
Intel Hex Address: $C6

Motorola Hex Address: $C7

1 Binary Value

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 102 Datasheet

Within any one CD1865, the three Match registers must have unique values. In multiple CD1865 designs where service
acknowledgments are cascaded, all Match registers of the same type (for example, Receive) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the addresses of these registers
must be placed in the equivalent Match register so that contains $77.

9.2.2.6 Global Vector Register

 Register Name:
Register Description: Global Service Vector Register
Default Value: FF

Access: Read/Write

8-Bit Hex Address: $40
Intel Hex Address: $80

Motorola Hex Address: $81

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Value IT2 IT1 IT0

Bit Description

Bits 7:3

These bits are user-defined. However, in a multiple-device design, these five bits must have a unique value in
each CD1865 to identify which CD1865 is returning a vector during service acknowledgments. When writing to
this register, write eight bits at once; the CD1865 modifies the low-three bits automatically. Note that if this
register is read in a normal manner, the original eight bits are read and the modified bits from the last
acknowledgment cycle is not preserved.

These three bits indicate the group/type of service request occurring. These bit are supplied by the CD1865
during an acknowledgment cycle.

IT2 IT1 IT0 Value Group/Type

Bits 2:0

0 0 0 0 No Request Pending*

0 0 1 1 Modem Signal Change Service Request

0 1 0 2 Transmit Data Service Request

0 1 1 3 Receive Good Data Service Request

1 0 0 4 Reserved

1 0 1 5 Reserved

1 1 0 6 Reserved

1 1 1 7 Receive Exception Service Request

NOTE: * This code is returned by the CD1865 only when RegAckEn is set, and DaisyEn is not set. In this
condition, the CD1865 must provide a vector when acknowledged. If the CD1865 receives an
acknowledgment for which it does not have a request pending, it returns ‘000’.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 103

9.2.3 Service Request/Interrupt Control Registers

9.2.3.1 Service Request Status Register

The i-level bits, ILV[1] and ILV[0], are the current context code from the service request context stack. They are
encoded as follows:

Register Name:
Register Description: Service Request Status Register

Default Value: 0

Access: Read only

8-Bit Hex Address: $65
Intel Hex Address: $CA

Motorola Hex Address: $CB

ILV[1] ILV[0] ext int ext int ext int

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 104 Datasheet

 Bit Description

.

ILV1 ILV0 Context

Bits 7:6

0 0 Not in a service request context

0 1 CD1865 is in a Receive Service Request context

1 1 CD1865 is in a Transmit Service Request context

1 0 CD1865 is in a Modem Service Request context

An accepted interrupt acknowledge cycle pushes a new context onto the stack.
NOTE: The Status bits are positive true, and the * Pins are negative true. The ‘...int’ (internal) values are local

to the device being read, and the ‘...ext’ (external) values are the current external status on the pin,
that is, the result of the wire-OR’ed function.

.

RREQext RREQint Context

Bits 5:4

0 0 No interrupts

0 1 Invalid state

1 1 The location device requests a receive interrupt.

External interrupt pending. The local device has no receive
1 0

interrupts.

.

TREQext TREQint Context

Bits 3:2

0 0 No interrupts

0 1 Invalid state

1 1 The location device requests a transmit interrupt.

External interrupt pending. The local device has no transmit
1 0

interrupts.

.

MREQext MREQint Context

Bits 1:0

0 0 No interrupts

0 1 Invalid state

1 1 The location device requests a modem interrupt.

External interrupt pending. The local device has no modem
1 0

interrupts.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 105

The Service Request Acknowledge registers are read-only registers that return an appropriate interrupt vector when read.
Reading one of these registers has the effect of a service acknowledgment cycle in the CD1865 (not necessarily the one
addressed; it may be one further down the daisy chain). The vector supplied on the data bus during the cycle is described
under the Global Service Vector register description. RegAckEn must be set for these registers to operate properly.

9.2.3.2 Modem Request Acknowledge Register\

Register Name:

Register Description: Modem Request Acknowledge Register
Default Value: 80
Access: Read only

8-Bit Hex Address: $75
Intel Hex Address: $EA

Motorola Hex Address: $EB

Modified Interrupt Vector provided on read

9.2.3.3 Transmit Request Acknowledge Register

Register Name:

Register Description: Transmit Request Acknowledge Register
Default Value: 80

Access: Read only

8-Bit Hex Address: $76
Intel Hex Address: $EC

Motorola Hex Address: $ED

Modified Interrupt Vector provided on read

9.2.3.4 Receive Request Acknowledge Register

Register Name:
Register Description: Receive Request Acknowledge Register

Default Value: 80
Access: Read only

8-Bit Hex Address: $77
Intel Hex Address: $EE

Motorola Hex Address: $EF

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Modified Interrupt Vector provided on read

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 106 Datasheet

There are three registers used to provide the channel number of the channel requesting service. Reading any of these
registers causes the CD1865 to ‘mask-in’ three bits, specifying the channel number of the currently active channel.
Normally these registers are read by the host when it is handling a service request. In this case, the three bits are the
number of the channel requesting service. If any of the three registers are read when the CD1865 is not in a service
request context, the three bits are the current value in the CAR. Bits 4:2 are masked into the contents of this register by the
CD1865 when it is read by the host. The actual contents of the register are not modified.

These three registers are provided as a convenience to the user. In most applications, the user uses one of these locations,
and sets the register to an arbitrary value. All types of service routines would use this register. However, in some cases it
may be useful to be able to record information about the state of the CD1865 (or the software driving it) that is
associated with each of the three service request types. In this case, the user may associate an individual register with
each level of service request, and store whatever information is required in the unused bits. When entering a service
routine, the software can check these bits (a sub-vector) to read recorded states.

9.2.3.5 Global Channel Registers 1

Register Name:

Register Description: Global Service Channel Register 1
Default Value: 0
Access: Read/Write

8-Bit Hex Address: $41

Intel Hex Address: $82
Motorola Hex Address: $83

Binary Value C2 C1 C0 Binary Value

9.2.3.6 Global Channel Registers 2

Register Name:

Register Description: Global Service Channel Register 2
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $42

Intel Hex Address: $84
Motorola Hex Address: $85

Binary Value C2 C1 C0 Binary Value

9.2.3.7 Global Channel Registers 3

Register Name:
Register Description: Global Service Channel Register 3

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $43
Intel Hex Address: $86

Motorola Hex Address: $87

Binary Value C2 C1 C0 Binary Value

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 107

This register contains the channel number used for channel-oriented host read or write operations when the host is not in
a service request service routine. When the CD1865 and the host are in a service request routine, the CD1865 supplies
the service-requesting channel number by the Global Interrupting Channel register. The Channel Access register contents
are not used during service request. The host service request routine is restricted to accessing only the register set of the
service-requesting channel and the Global registers.

The Channel Access register is used by the host when the host is setting up or modifying the configuration of the
channel. It is also used to issue certain channel-specific commands such as sending a flow-control character.

Bit Description

Bits 7:5 User-defined

Defines the service requesting channel number.

C2 C1 C0 Channel Number

Bits 4:2

0 0 0 Channel 0

0 0 1 Channel 1

0 1 0 Channel 2

0 1 1 Channel 3

1 0 0 Channel 4

1 0 1 Channel 5

1 1 0 Channel 6

1 1 1 Channel 7

Bits 1:0 User-defined

9.2.3.8 Channel Access Register

Register Name:

Register Description: Channel Access Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $64

Intel Hex Address: $C8

Motorola Hex Address: $C9

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved A7(0) C2 C1 C0

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 108 Datasheet

9.3 Indexed Indirect Registers

Certain registers are specially designed to facilitate service-request handling. These registers do not exist as distinct
registers, and can be thought of as pointers. These registers provide functions that are valid only during service-request
service routines, and they must not be accessed at other times.

Three of the registers are actually pointers to the Transmit and Receive FIFOs, that is, when referenced they cause the
appropriate FIFO to be accessed. These registers are: Receive Data register, Receive Character Status register, and
Transmit Data register.

The CD1865 maintains all channel-specific information. During data transfer between the host and the CD1865, the
CD1865 uses a context-switching technique to switch the proper channel-specific information into the Global registers
for use by the host. This reduces the processing burden on the host by eliminating the need to calculate address offsets.

9.3.1 Receive Data Count Register

Bit Description

Bits 7:4 Reserved, must be a ‘0’.

Internally, to the CD1865, this is Address bit 7. This bit completes the external to internal CD1865 register
Bit 3 address mapping, but it is only to be used for test purposes. In normal operation, this bit should always be a

‘0’.

Channel number

C2 C1 C0 Channel Number

Bits 2:0

0 0 0 Channel 0

0 0 1 Channel 1

0 1 0 Channel 2

0 1 1 Channel 3

1 0 0 Channel 4

1 0 1 Channel 5

1 1 0 Channel 6

1 1 1 Channel 7

Register Name:
Register Description: Receive Data Count Register

Default Value: 0
Access: Read Only

8-Bit Hex Address: $07
Intel Hex Address: $0E

Motorola Hex Address: $0F

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 CT3 CT2 CT1 CT0

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 109

This register accesses the Receive Data FIFO for the channel. It is used by all channels to transfer Receive FIFO data to
the host. Successive reads transfer bytes from the FIFO to the host. Reading this register increments an internal pointer
to the Data and Status FIFOs. During service-request routines for Good Data, this is the only register that must be read.
During service-request routines for Receive Exception, the Receive Status register must be read first, then this register
may be read. If both the RCSR and this register are to be read, the RCSR must be read first because reading this register
causes the FIFOs to ‘pop’.

Any attempt to write to this register causes unpredictable results.

Bit Description

Bits 7:4 Reserved, must be a ‘0’.

Specifies the number of Good Data bytes for transfer from the Receive FIFO at the time of service request.
This may be larger or smaller than the threshold level set by the user. This register reflects the actual amount of
data available, which can be greater than the threshold level if service-request response is slow, or less than
the threshold if some other event (such as an error condition) has caused the Receive Good Data Interrupt.
This register need only be read when receiving Good Data; by default all exceptions are one character, and the
value in this register during a Receive Exception is not defined or meaningful. The RDCR contains a zero if the
current service request is for the NNDT case.

C3 C2 C1 C0 Number of Good Bytes

Bits 3:0

0 0 0 0 Does not occur

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1001 to 1111 Does not occur

9.3.2 Receive Data Register

Register Name:

Register Description: Receive Data Register

Default Value: 0

Access: Read Only

8-Bit Hex Address: $78

Intel Hex Address: $F0

Motorola Hex Address: $F1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

D7 D6 D5 D4 D3 D2 D1 D0

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 110 Datasheet

9.3.3 Receive Character Status Register

Multiple errors in 1 byte are possible because the CD1865 evaluates the character bit-by-bit as it receives it. For
example, a parity error is detected and flagged before a framing error. If a character is received with every bit (including
the stop bit) equal to a ‘0’, it is marked as a line-break. If some bits are a ‘1’, but the Stop bit is ‘missing’ a ‘0’, it is
marked as a framing error. If odd parity is set and the bits received are all zeroes, it is marked as both a break character
and a parity error. In addition to any other bits, the Overrun bit is set if an overrun has occurred. Any attempt to write to
this register causes unpredictable results.

Register Name:
Register Description: Receive Character Status Register

Default Value: 0
Access: Read Only

8-Bit Hex Address: $7A
Intel Hex Address: $F4

Motorola Hex Address: $F5

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Time-out SC Det2 SC Det1 SC Det0 Break PE FE OE

This register accesses the status information for the current receive character.

Bit Description

Bit 7
Time-out: Indicates that the Receive FIFO is empty, and no data has been received within the receive time- out
period. There is no data character associated with this status and no other status bits are valid if the Time- out
bit is set. Must be ‘armed’ by the NNDT bit in .

Special Character Detect (SCD0-2):

SCD2 SCD1 SCD0 Status

Bits 6:4

0 0 0 None detected

Special Character 1 or Special Character 1 and 3 sequence matched
0 0 1

(only if Special Character 1 and 3 sequence is enabled).

Special Character 2 or Special Character 2 and 4 sequence matched
0 1 0

(only if Special Character 1 and 3 sequence is enabled).

Special Character 3 (only if Special Character 1 and 3 sequence is not
0 1 1

enabled).

Special Character 4 (only if Special Character 2 and 4 sequence is not
1 0 0

enabled).

NOTE: No special-character match is performed if any type of error occurs. The second character of a two-
character sequence cannot cause a receiver overrun.

Bit 3 Break: Indicates that a break has been detected.

Bit 2 Parity Error: Indicates that a parity error has been detected.

Bit 1 Framing Error: Indicates that a bad Stop bit has been detected.

Overrun Error: Indicates that new data has arrived but the CD1865 FIFO and Holding registers
Bit 0 are full. The new data is lost and the overrun indication is flagged on the last character received

before the overrun occurred.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 111

9.3.4 Transmit Data Register

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

When servicing a Transmit Data Service Request, the Transmit Data register accesses the Transmit FIFO of the service-
requesting channel. Data is written to the Transmit Data register by the host; the CD1865 automatic FIFO pointer
mechanism places the data into the service-requesting channel’s Transmit Character FIFO. Up to 8 bytes of data may be
written into the TDR during Transmit Data Service Request.

Any attempt to read from this register causes unpredictable results.

9.3.5 End-of-Service Request Register

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

This is a dummy register, and must be written to by the host’s service request routine to signal to the CD1865 that the
current service-request service is concluded. This must be the last access to the CD1865 during a service-request routine.
Writing to this register generates an internal End Of Service signal, which ‘pops’ the CD1865’s service-request-context
stack, allowing the CD1865 to resume normal processing and also service other channels. Service-request contexts may
be nested, as explained in Section 5.4; that is, one can respond to and service a higher-priority event while in the middle
of a lower-priority service request routine (nesting subroutine calls within other subroutines).

Any attempt to read from this register causes unpredictable results.

9.4 Channel Registers

There are eight sets of Channel registers, but only one set is available at any given time. This offers the software-
simplifying advantage that a given register is at the same address regardless of the channel number. To access a given
channel’s registers, first point to them by writing the channel number to the Channel Access register.

Register Name:
Register Description: Transmit Data Register

Default Value: 0
Access: Write Only

8-Bit Hex Address: $7B
Intel Hex Address: $F6

Motorola Hex Address: $F7

D7 D6 D5 D4 D3 D2 D1 D0

Register Name:
Register Description: End-of-Service Request Register

Default Value: 0

Access: Write Only

8-Bit Hex Address: $7F
Intel Hex Address: $FE
Motorola Hex Address:

Irrelevant Value

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 112 Datasheet

9.4.1 Enable Register

Register Name:
Register Description: Service Request Enable Register 8-Bit Hex Address: $02

Default Value: 0 Intel Hex Address: $04
Access: Read/Write Motorola Hex Address: $05

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSR CD CTS RxD RxSC TxRdy TxMpty NNDT

A ‘1’ in each bit position enables service request generation for the associated cause.

Bit Description

Bit 7

Data-Set-Ready *DSR) Service Request: When enabled, generates a Modem-Change Service Request on the selected

level changes of the DSR input.

Bit 6 Carrier Detect (CD) Service Request: When enabled, generates a Modem-Change Service Request on the selected level

changes of the CD input.

Bit 5 Clear-To-Send (CTS) Service Request: When enabled, generates a Modem-Change Service Request on the selected level

changes of the CTS Input.

Bit 4 Receive Data Service Request: When enabled, the Receive Date Service Request is generated for receive data and Receive

Exceptions.

Bit 3 When disabled, Receive Exceptions are generated for error conditions and time-outs only. If flow-control transparency is

set, flow-control characters are stripped, and no Receive Special Character Exceptions occurs.

Bit 2 Transmit Ready (TxRdy) Service Request: When enabled, the transmitter generates a service request when the Transmit

FIFO becomes empty. Set this bitwhen first beginning transmission on a channel, and before attempting to write data to the

Transmit FIFO. Enabling the service request causes an immediate Transmit Service Request, allowing it to write data into

the Transmit FIFO in the usual manner. This bit may be set and cleared as needed to regulate the assertion of Transmit Data

Service Requests on each channel. This technique is preferred over disabling the transmitter.

Bit 1 Transmitter Empty (TxMpty) Service Request: When enabled, a service request is generated when the Transmit FIFO,
the Transmit Holding register, and the Transmit Shift register are all empty. This mode is provided to allow the host to
determine when all bits are sent and it is safe to alter a channel’s configuration.

Bit 0 No New Data Time-out (NNDT) Service Request: When enabled, a Receive Exception Service Request is generated after

the completion of data transfer from the CD 1865 to the host. This feature assists in buffer management by progiding a

notice of a gap in the Receive Data Stream longer than the time-out period.

9.4.2 Channel Command Register

 Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Register Name:
Register Description: Channel Command Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $01
Intel Hex Address: $02

Motorola Hex Address: $03

RESET CHAN COR CHNG SEND SP CH CHAN CTL D3 D2 D1 D0

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 113

The CCR is a special register used to prompt the CD1865 processor to indicate if any channel parameters have changed.
Bits are set in the CCR to indicate which of several commands to carry out. The CD1865 processor notes changes in
these bits and makes the required adjustments to the hardware; this process can take from microseconds to milliseconds.
Therefore, it is important that the host CPU waits until the CD1865 processor has finished the current command before
issuing any more commands, or continuing with any operation that the command affects. For example, after setting the
Local Loopback bit in COR2, the host must wait until the command is complete before resuming transmission. If the
host does not wait, characters may not be properly looped back.

Reset Channel, Channel Option, Send Special Character, and Channel Control commands can be set through the CCR
register. One of the four commands can be selected by setting the appropriate bit (7:4). The commands can be defined in
detail by setting the bit fields (3:0) accordingly. Bit fields (3:0) are defined differently by each command. The CD1865
indicates completion by clearing the CCR.

The tables on the following pages define the appropriate setting of the bits according to the command.

Reset Channel Command

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RESET CHAN 0 0 0 0 0 0 TYPE

This is a software reset command. There are two types of reset — Channel Reset (type 0), which resets only the current
channel, and Global Reset (type 1), which resets the entire part to its power- up condition. When the channel reset
command is issued, the CD1865 disables the transmitter and the receiver and clears the Data and Status FIFOs of the
channel. Channel parameters are not affected by a Channel Reset.

Bit Description

Bit 7 Reset Channel Command.

Bit 6 Channel Option Register Command.

Bit 5 Send Special Character(s) Command.

Bit 4 Channel Control Command.

Bits 3:0 Defined by the type of command being issued; see the following descriptions.

Bit Description

Bit 7 Reset Channel Command, must be a ‘1’.
Bits 6:1 Not used. Must be a ‘0’.

Reset Type: If the Reset Type bit is a ‘0’, a software reset of the channel is performed. The transmitter and

Bit 0 receiver are disabled, and all FIFOs are cleared (flushed). If the Reset Type bit is a ‘1’, an on-device firmware
initialization of all channels is performed. All channel and global parameters are reset to their power-on reset
condition.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 114 Datasheet

Channel Option Register Change Command

Changes made to some Channel Option register bits must be signalled to the CD1865 by this command. Any
combination of COR changes may be indicated by one command. All of the bits in COR3 take effect immediately, and
all of the bits in COR2 (except LLM) take effect immediately. In other words, when changing COR3 or any of COR2
(except LLM), it is not necessary to issue a Channel Option register Change Command. However, to preserve
compatibility with older CD1865 designs, it is acceptable to set these bits.

Send Special Character(s) Command

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 COR CHNG 0 0 COR3 COR2 COR1 N/U

Bit Description

Bit 7 Must be a ‘0’.

Bit 6 Channel Option Register Change Command, must be a ‘1’.

Bits 5:4 Must be a ‘0’.

Bit 3 Channel Option Register 3 changed (no longer required).

Bit 2 Channel Option Register 2 changed (required only for Local Loopback mode change).

Bit 1 Channel Option Register 1 changed.

Bit 0 Not used.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 SEND SP CH 0 0 SSPC2 SSPC1 SSPC0

Bit Description

Bits 7:6 Must be a ‘0’.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 115

Channel Control Command

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

When turning the receiver or transmitter on or off, it is faster to simply enable and disable service requests () rather than
using the Channel Control Command.

Bit Description

Bit 5 Send Special Character(s) Command, must be a ‘1’.
Bits 4:3 Must be a ‘0’.

Special Character Select

SSPC2 SSPC1 SSPC0 Function

Bits 2:0

0 0 0 Do not use

Send Special Character 1, or characters 1 and 3 in sequence if

0 0 1 COR3 [XonCH] defines a two-character

sequence.

0 1 0 Send Special Character 2, or characters 2 and 4 in

sequence if COR3 [XoffCH] defines a two-character

sequence.

0 1 1 Send Special Character 3

1 0 0 Send Special Character 4

1 0 1 Do not use

1 1 0 Do not use

1 1 1 Do not use

0 0 0 CHAN CTL XMTR EN XMTR DIS RCVR EN RCVR DIS

Bit Description

Bits 7:5 Must be a ‘0’.

Bit 4 Channel Control Command, must be a ‘1’.

Bit 3 Transmitter Enable

Bit 2 Transmitter Disable

Bit 1 Receiver Enable

Bit 0 Receiver Disable

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 116 Datasheet

9.4.3 Channel Option Register 1

Register Name: COR1
Register Description: Channel Option Register 1

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $03
Intel Hex Address: $06

Motorola Hex Address: $07

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Parity ParM1 ParM0 Ignore Stop 1 Stop 0 CHL 1 CHL 0

Changes to this register must be signalled by the Channel Command register
.

Bit Description

Parity:
Bit 7

Bits 6:5

Bit 4

Bits 3:2

Bits 1:0

1 = odd parity.
0 = even parity.

Parity Mode 1 and 0: Defines Parity mode for both the transmitter and the receiver.

ParM1 ParM0 Parity
0 0 No parity
0 1 Force parity (odd parity = force 1, even = force 0)
1 0 Normal parity
1 1 Not used

Ignore: Ignore parity

0 = Evaluate parity on received characters.
1 = Do not evaluate parity on received characters.

Stop Bit Length: Specifies the length of the Stop bit.

Stop1 Stop0 Stop Bit
0 0 1 Stop bit
0 1 1 1/2 Stop bits
1 0 2 Stop bits
1 1 2 1/2 Stop bits

Character Length:

CHL1 CHL0 Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

9.4.4 Channel Option Register 2

Register Name: COR2

Register Description: Channel Option Register 2
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $04

Intel Hex Address: $08
Motorola Hex Address: $09

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE

Changes only to bit 4 (LLM) of this register must be signalled by the Channel Command register.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 117

Bit Description

Bit 7

Bit 6

Implied Xon Mode (IXM): This bit has meaning only when in the automatic Transmit In-Band Flow-control
mode. During Transmit In-Band Flow-control mode, the CD1865 stops transmission upon detection of an Xoff
character or character sequence. The IXM bit determines whether the CD1865 should restart transmission
based on receipt of an Xon character or any character. When IXM bit is set, the CD1865 restarts transmission
upon detection of any character. When IXM bit is not set, the CD1865 waits for the Xon character or character
sequence to restart the transmission.

Transmit In-Band (Xon/Xoff) Flow Control Automatic Enable (TxIBE): The CD1865 in the Transmitting
mode is flow-controlled by the remote. Upon receipt of the Xoff character, the CD1865 terminates
transmission after the current character in the Transmit Shift register, and the character in the Transmit
Holding register is sent. The CD1865 resumes transmission upon receipt of the Xon character, or any
character, depending on the state of the IXM bit.

Bit 5 Embedded Transmitter Command Enable (ETC): If set, the embedded special transmitter command

functions are enabled.

Local Loopback Mode (LLM):
Bit 4

Bit 3

Bit 2

1 = Enables the Local Loopback mode.
0 = Disables the Local Loopback mode.

Remote Loopback Mode (RLM):

1 = Enables the Remote Loopback mode.
0 = Disables the Remote Loopback mode.

RTS Automatic Output Enable (RtsAO): When set, if the channel is enabled, the CD1865 automatically
asserts the RTS* Output when it has characters to send. If CtsAE is also set, it waits for CTS* to respond prior to
transmission.

Bit 1 CTS Automatic Enable (CtsAE): Enables the CTS* Input to be used as automatic transmitter enable or

disable.

Bit 0 DSR Automatic Enable (DsrAE): Enables the DSR* Input as automatic receiver enable or disable.

9.4.5 Channel Option Register 3

Register Name: COR3
Register Description: Channel Option Register 3

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $05
Intel Hex Address: $0A

Motorola Hex Address: $0B

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Xon CH Xoff CH FCT SCDE RxTH3 RxTH2 RxTH1 RxTH0

Changes to this register do not have to be signalled by the CCR.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 118 Datasheet

This Status register stores the current state of the channel. It may be read by the host at any time. If the host determines
that a flow-control state is inappropriate, it may be cleared by enabling or disabling the transmitter or receiver by CCR
command.

Bit Description

Bit 7

Bit 6

Bit 5

Bit 4

Xon Character Definition:

0 = Xon Character is a single-character code, and it is defined by Special Character.
1 = Xon Character is a double-character sequence, and it is defined by Special Characters 1 and 3.

Xoff Character Definition:

0 = Xoff Character is a single-character code, and it is defined by Special Character 2.
1 = Xoff Character is a double-character sequence, and it is defined by Special Characters 2 and 4.

Flow-Control Transparency (FCT) Mode:

0 = Flow-control characters received are given to the host by Receive Exception Service Requests.
1 = Flow-control characters received are not given to the host by Receive Exception Service Requests.

Special-Character Detection Enable:

0 = Special-Character Status detection is disabled.
1 = Special-Character Status detection is enabled.

RxFIFO Threshold:

RxTh3 RxTh2 RxTh1 RxTH0 Status

Bits 3:0

0 0 0 0 Do not use

0 0 0 1 1 character

0 0 1 0 2 characters

0 0 1 1 3 characters

0 1 0 0 4 characters

0 1 0 1 5 characters

0 1 1 0 6 characters

0 1 1 1 7 characters

1 0 0 0 8 characters

1001 to 1111 Reserved, do not use.

9.4.6 Channel Control Status Register

Register Name: CCSR
Register Description: Channel Control Status Register

Default Value: 0

Access: Read Only

8-Bit Hex Address: $06
Intel Hex Address: $0C

Motorola Hex Address: $0D

RxEN RxFloff RxFlon N/U TxEN TxFloff TxFlon N/U

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 119

This register monitors certain functions of the actual receive hardware. It should never be written to as this causes the
CD1865 to fail. Only two of the bits are defined herein; however, the other bit positions can change value, so these bits
should be ‘masked-out’ before testing.

Bit 6 is the sampled state of the RxD pin, as sampled at the last bit-rate clock edge. This is not the actual RxD Input, as
RxD cannot be sampled in real time. If no data has been received for a period of time, this bit still reflects the last
sampled state of the line at the end of the last character. This is because the line is not sampled when the CD1865 is
looking for the Start bit of a new character.

Bit Description

Bit 7

Bit 6

Bit 5

RxEn Receiver Enable:

0 = Receiver is disabled.
1 = Receiver is enabled.

RxFloff Receive Flow-off:

0 = Normal
1 = The CD1865 has requested the remote to stop transmission (Send Xoff Command has been given to the
channel). This bit is reset when the CD1865 has requested the remote to restart transmission, or when the
receiver is enabled or disabled, or when the channel is reset.

RxFlon Receive Flow-on:

0 = Normal
1 = The CD1865 has requested the remote to restart character transmission (Send Xon Command has been
given to the channel). This bit is reset when the next (non-flow control) character is received, or when the
receiver is enabled or disabled, or when the channel is reset.

Bit 4 Not used

TxEn Transmitter Enable:

Bit 3

Bit 2

Bit 1

0 = Transmitter is disabled.
1 = Transmitter is enabled.

TxFloff Transmit Flow-off:

0 = Normal
1 = The CD1865 has been requested by the remote to stop transmission. This bit is reset when the CD1865
receives a request to resume transmission, or when the transmitter is enabled or disabled, or when the
channel is reset.

TxFlon Transmit Flow-on:

0 = Normal
1 = The CD1865 has been requested by the remote to resume transmission. This bit is reset once character
transmission is resumed, or when the transmitter is enabled or disabled, or when the channel is reset.

Bit 0 Not used

9.4.7 Receiver Bit Register

Register Name: RBR
Register Description: Receiver Bit Register

Default Value: 21

Access: Read Only

8-Bit Hex Address: $33
Intel Hex Address: $66

Motorola Hex Address: $67

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved RxD Start Hunt Reserved

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 120 Datasheet

Bit 5 indicates whether the CD1865 is looking for a Start bit. If bit 5 is a ‘1’, it is looking. If bit 5 is a ‘0’, it is receiving a
character.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

This register defines the time period for two functions related to the Receive FIFO. As each character is moved to the
Receive FIFO, the Receive Timer is reloaded with the Receive Data Time-out Period. The Receive Timer is then
decremental on each tick of the Prescaler Counter. If the Receive Timer reaches a ‘0’, it causes a Receive Good Data
Service Request.

There is another optional feature called No New Data Time-out. When enabled, the Receive Timer generates a Receive
Exception if the timer expires after the last data is transferred from the FIFO to the host. This is intended to tell the host
that no more data is arriving, and to go ahead and process the buffer.

The Receive Time-out Period register defines the time-out period for both of these functions. It counts in time
increments defined by the prescaler.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

9.4.8 Receive Time-Out Period Register

Register Name: RTPR

Register Description: Receive Time-Out Period Register
Default Value: 5

Access: Read/Write

8-Bit Hex Address: $18

Intel Hex Address: $30
Motorola Hex Address: $31

Receiver Data Time-out Period

9.4.9 Receive Bit Rate Period Registers (High/Low)

Register Name: RBPRH
Register Description: Receive Bit Rate Period Register (High)

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $31
Intel Hex Address: $62

Motorola Hex Address: $63

Receiver Bit Rate Divisor Byte

Register Name: RBPRL
Register Description: Receive Bit Rate Period Register (Low)

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $32

Intel Hex Address: $64
Motorola Hex Address: $65

Receiver Bit Rate Divisor Byte

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 121

These two registers contain the 16-bit pre-load value for the Receive Bit Rate Counter. This count establishes the basic
Receiver Clock Rate, which must be 16 times the required Receiver Bit Rate. These registers are reset to a ‘0’ by
RESET*. The period established for the 16 times Receiver Clock Rate is equal to the RBPR 16-bit binary value times
the System Clock (CLK) Period.

These two registers contain the 16-bit pre-load value for the Transmit Bit Rate Counter. This count establishes the
Transmitter Clock Rate, which must be 16 times the required Transmitter Bit Rate. The precise period established for the
16 times Transmitter Clock is equal to the RBPR 16-bit binary value times the System Clock (CLK) Period. These
registers are reset to a ‘0’ by RESET*.

This register stores the right-justified bit pattern for Special Character 1. Unused bits must be a ‘0’. During receive, this
character is one of the four characters compared with the received data for special-character recognition. If a match
occurs with one of these four characters, it is noted in the Receiver Status FIFO entry accompanying the received
character unless a double-character compare is enabled. In this case, the Receive Status FIFO entry is not made until
both characters are compared and matched.

During transmit, this register contains the characters that are sent as a result of the Send Special Character 1 command. If
two-character sequences are enabled, Characters 1 and 3 are sent.

9.4.10 Transmit Bit Rate Period Registers (High/Low)

Register Name: TBPRH
Register Description: Transmit Bit Rate Period Register (High)

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $39
Intel Hex Address: $72

Motorola Hex Address: $73

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transmit Bit Rate Divisor Byte

Register Name: TBPRL
Register Description: Transmit Bit Rate Period Register (Low)

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $3A
Intel Hex Address: $74

Motorola Hex Address: $75

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transmit Bit Rate Divisor Byte

9.4.11 Special Character Register 1

Register Name: SCHR1
Register Description: Special Character Register 1

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $09
Intel Hex Address: $12

Motorola Hex Address: $13

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 1

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 122 Datasheet

Special Character 1 defines the Xon character or the first-half of the Xon-character sequence. The second half is Special
Character register 3.

9.4.12 Special Character Register 2

This register stores the right-justified bit pattern for Special Character 2. Unused bits must be a ‘0’. During receive, this
character is one of the four characters compared with the received data for special-character recognition. If a match
occurs with one of these four characters, it is noted in the Receiver Status FIFO entry accompanying the received
character unless a double-character compare is enabled. In this case, the Receive Status FIFO entry is not made until
both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Character 2 command. If
two-character sequences are enabled, Characters 2 and 4 are sent.

Special Character 2 defines the Xoff character or the first-half of the Xoff-character sequence.

9.4.13 Special Character Register 3

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

This register stores the right-justified bit pattern for Special Character 3. Unused bits must be a ‘0’. During receive, this
character is one of the four characters compared with the received data for special character recognition. If a match
occurs with one of these four characters, it is noted in the Receiver Status FIFO entry accompanying the received
character unless a double-character compare is enabled. In this case, the Receive Status FIFO entry is not made until
both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Character 3 command.

Special Character 3 may be the second-half of the Xon-character sequence.

Register Name: SCHR2

Register Description: Special Character Register 2
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $0A
Intel Hex Address: $14

Motorola Hex Address: $15

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 2

Register Name: SCHR3

Register Description: Special Character Register 3
Default Value: 0
Access: Read/Write

8-Bit Hex Address: $0B
Intel Hex Address: $16

Motorola Hex Address: $17

Special Character 3

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 123

9.4.14 Special Character Register 4

This register stores the right-justified bit pattern for Special Character 4. Unused bits must be a ‘0’. During receive, this
character is one of the four characters compared with the received data for special character recognition. If a match
occurs with one of these four characters, it is noted in the Receiver Status FIFO entry accompanying the received
character unless a double-character compare is enabled. In this case, the Receive Status FIFO entry is not made until
both characters are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special Character 4 command.

Special Character 4 may be the second-half of the Xoff-character sequence.

9.4.15 Modem Change Register

The CD1865 sets bits in this register when it recognizes a level change on a modem pin, as programmed by the Modem
Change Option registers. Changes detected are a cause for asserting the Modem Service Request if corresponding
Service Request Enable bits are set. Once the service request is asserted, updates to this register are inhibited until End Of
register () is written at the end of the Modem Service Request Routine. The host must clear these register bits during the
service routine.

Register Name: SCHR4
Register Description: Special Character Register 4

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $0C
Intel Hex Address: $18

Motorola Hex Address: $19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 4

Register Name: MCR
Register Description: Modem Change Register

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $12
Intel Hex Address: $24

Motorola Hex Address: $25

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRchg CDchg CTSchg 0 0 0 0 0

Bit Description

Bit 7 DSR Changed: A logic ‘1’ denotes that the Data-Set-Ready Input has changed state.
Bit 6 CD Changed: A logic ‘1’ denotes that the Carrier Detect Input has changed state.

Bit 5 CTS Changed: A logic ‘1’ denotes that the Clear-to-Send Input has changed state.

Bits 4:0 Must be a ‘0’.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 124 Datasheet

9.4.16 Modem Change Option Register 1

Register Name: MCOR1

Register Description: Modem Change Option Register 1

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $10

Intel Hex Address: $20

Motorola Hex Address: $21

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRzd CDzd CTSzd 0 DTRth3 DTRth2 DTRth1 DTRth0

This register is used to define the current state change options to be monitored.

Bit Description

Bit 7 DSRzd is a ‘1’: Detect high-to-low voltage transition on DSR* Input (zero-to-one transition of DSR (MSVR)
bit).

Bit 6 CDzd is a ‘1’: Detect high-to-low voltage transition on CD* Input (zero-to-one transition of CD (MSVR) bit).

Bit 5 CTSzd is a ‘1’: Detect high-to-low voltage transition on CTS* Input (zero-to-one transition of CTS (MSVR)
bit).

Bit 4 Must be a ‘0’.

Defines the threshold level that causes negation of DTR* when this flow-control option is specified. Normally,
this level should be equal to or higher than the service-request level threshold as set in COR3. If it is set lower
than the service-request threshold, it defaults to the service-request threshold level.

DTRth3 DTRth2 DTRth1 DTRth0 Function

Bits 3:0

0 0 0 0 Automatic DTR mode disabled

0 0 0 1 1 character

0 0 1 0 2 character

0 0 1 1 3 character

0 1 0 0 4 character

0 1 0 1 5 character

0 1 1 0 6 character

0 1 1 1 7 character

1 0 0 0 8 character

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 125

9.4.17 Modem Change Option Register 2

Register Name: MCOR2
Register Description: Modem Change Option Register 2

Default Value: 0
Access: Read/Write

8-Bit Hex Address: $11
Intel Hex Address: $22

Motorola Hex Address: $23

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRod CDod CTSod 0 0 0 0 0

This register is used to define the current state change options to be monitored.

Bit Description

Bit 7 DSRod is a ‘1’: Detect low-to-high transition on DSR* Input (one-to-zero transition DSR (MSVR) bit).
Bit 6 CDod is a ‘1’: Detect low-to-high transition on CD* Input (one-to-zero transition of CD (MSVR) bit).

Bit 5 CTSod is a ‘1’: Detect low-to-high transition on CTS* Input (one-to-zero transition of CTS (MSVR) bit).

Bits 4:0 Must be a ‘0’.

9.4.18 Modem Signal Value Register

Register Name: MSVR
Register Description: Modem Signal Value Register

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $28
Intel Hex Address: $50

Motorola Hex Address: $51

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSR CD CTS N/U N/U N/U DTR RTS

This register is read to determine the current input levels on the Modem Input pins. It is written to
supply an output value for the RTS* and DTR* pins. The register bits have the opposite polarities

from the actual states on the individual pins. Writing a ‘1’ causes the pin to go to nominal zero volts.

Bit Description

Bit 7 DSR: Current state of Data-Set-Ready Input.
Bit 6 CD: Current state of Carrier Detect Input.

Bit 5 CTS: Current state of Clear-to-Send Input.

Bits 4:2 Not used.

Bit 1 DTR: Current state of Data-Terminal-Ready Output.

Bit 0 RTS: Current state of Request-to-Send Output.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 126 Datasheet

9.4.19 Modem Signal Value Request-to-Send Register

Register Name: MSVRTS

Register Description: Modem Signal Value Request-to-Send Register

Default Value: 0
Access: Write Only

8-Bit Hex Address: $29

Intel Hex Address: $52

Motorola Hex Address: $53

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 0 RTS

In the Modem Signal Value register, a write to either RTS or DTR affects the state of the other one.
This can be a problem when the CD1865 is using one of these signals for flow control and the other
one needs to be used under host control. This register writes to RTS without affecting the state of
any other bits. RTS is at bit 0.

9.4.20 Modem Signal Value Data-Terminal-Ready Register

Register Name: MSVDTR

Register Description: Modem Signal Value Data Terminal Ready

Default Value: 0
Access: Write Only

8-Bit Hex Address: $2A
Intel Hex Address: $54

Motorola Hex Address: $55

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 DTR 0

In the Modem Signal Value register, a write to either RTS or DTR affects the state of the other one.
This can be a problem when the CD1865 is using one of these signals for flow control and the other
one needs to be used under host control. This register writes to DTR without affecting the state of
any other bits. DTR is at bit 1.

Note: Before beginning any new design with this device, please contact Intel for the latest errata
information. See the back cover of this document for sales office locations and phone numbers.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 127

10.0 Electrical Specifications

10.1 Absolute Maximum Ratings

• Operating ambient temperature 0°C to 70°C

• Storage temperature −65°C to 150°C

• All voltages, with respect to ground −0.5 volts to Vcc + 0.5 volts

• Supply voltage (Vcc) +7.0 volts

• Power dissipation 0.5 watt

Note: Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any conditions
above those indicated in the operational sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

10.2 Recommended Operating Conditions

• Supply voltage (Vcc) 5 volts ± 5%

• Operating free-air ambient temperature 0°C < TA < 70°C

• System clock 33 MHz

10.3 DC Electrical Characteristics

• (@ Vcc = 5 volts ± 5%, TA = 0°C to 70°C

Symbol Parameter MIN MAX Units Conditions

VIL Input low voltage −0.5 0.8 V

VIH Input high voltage 2.0 Vcc V

VOL Output low voltage 0.4 V IOL = 8 mA

VOH Output high voltage 2.4 Vcc V IOH = −8 mA

IIL Input leakage current −10 10 µA 0 < Vin < Vcc

ILL Data bus three-state leakage current −10 10 µA 0 < Vout < Vcc

IOC Open drain output leakage −10 10 µA 0 < Vout < Vcc

ICC Power supply current 90 mA CLK = 33 MHz

Cin Input capacitance 10 pF

Cout Output capacitance 10 pF

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 128 Datasheet

10.5 AC Electrical Characteristics

Internally, the CD1865 is a fully clocked design; however, the hardware interface to the CD1865 may be either
unclocked or clocked. An unclocked interface is generally easier to implement, especially if the CD1865 and its host are
operating at different clock speeds. A clocked interface may be faster in some applications.

10.5.1 Clocked Bus Interface

Data transfers to or from the device occur in two steps. The first step occurs during the clock-low time. If the read/write
state machine detects that it is time to do a cycle, it acquires the internal bus. The second step, that of actually transferring
the data, occurs during the clock-high time. The cycle is complete at the end of the clock-high time.

The read/write state machine determines that it is time to do a cycle when there is a falling edge on the clock and both
CS* and DS* are low. There is a specified setup time which must be met to guarantee that the cycle begins. If this setup
is not met, the cycle occurs one clock later. If the cycle is recognized, arbitration for the internal bus is done during the
clock-low time. Addresses (and data, if a write cycle) must meet another setup time specification to the rising edge of the
clock for the actual data transfer to occur properly during the clock-high time. In addition, the addresses must remain
valid throughout the clock-high time, as specified. If the cycle is a write cycle, data must remain valid as specified. If the
cycle is a read cycle, data is guaranteed valid for a specified time after the rising edge of the clock.

10.4 Index of Timing Information

Figure Title Page

Figure 29 “Clocked Bus Interface Reset” 130

Figure 30 “Clocked Bus Interface Clocks” 131

Figure 31 “Clocked Bus Interface Read Cycle, Motorola‚-Style Handshake” 131

Figure 32 “Clocked Bus Interface Service Acknowledgment Cycle, Motorola‚-Style
Handshake” 132

Figure 33 “Clocked Bus Interface Write Cycle, Motorola‚-Style Handshake” 133

Figure 34 “Clocked Bus Interface Read Cycle, Intel‚-Style Handshake” 134

Figure 35 “Clocked Bus Interface Service Acknowledgment Cycle, Intel‚-Style
Handshake” 135

Figure 36 “Clocked Bus Interface Write Cycle, Intel‚-Style Handshake” 136

Figure 37 “Unclocked Bus Interface Read Cycle, Motorola‚-Style Handshake” 139

Figure 38 “Unclocked Bus Interface Service Acknowledgment Cycle, Motorola‚-Style
Handshake” 140

Figure 39 “Unclocked Bus Interface Write Cycle, Motorola‚-Style Handshake” 141

Figure 40 “Unclocked Bus Interface Read Cycle, Intel‚-Style Handshake” 142

Figure 41 “Unclocked Bus Interface Service Acknowledgment Cycle, Intel‚-Style
Handshake” 143

Figure 42 “Unclocked Bus Interface Write Cycle, Intel‚-Style Handshake” 144

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 129

Service Acknowledge Cycles are a special case of read cycles. The service acknowledge ‘read’
(which returns the Global Service Request Vector value to the host) is started when the read/write state machine detects
both DS* and another internal signal derived from both ACKIN* and DS*. There are two possible worst-case paths to
consider when determining whether DS* and ACKIN* meet the necessary setup times to guarantee recognition on a
particular clock edge. The longest path is DS*; it must propagate through a gate, an 8-bit comparator, a state machine,
and another gate before arriving at the read/write state machine. The setup time for this is given in Table 10.

The other critical path is ACKIN*; it must pass through a state machine and a gate before arriving at the read/write state
machine. The setup time to guarantee recognition on a particular clock edge is given in Table 10. Intel-style pin names
are shown in {brackets}. All times are in nanoseconds, unless otherwise specified.

Table 10. Clocked Timings (Sheet 1 of 2)

Number in

Figures
Description MIN (1) MAX (1) Notes

t1
Setup, DS*{RD*} and CS* low to CLK low, for read or write cycle to start

(‘ordinary’ reads and all writes)
10 2

t2
Setup DS{RD*} low to CLK low, foir service acknowledge cycle to start

(ACKIN* clcyles and read cycles from acknowledge registers)
15 3

t3 Setup, ACKIN* low to CLK low for cycle to start 10

t4 Setup, Address valid to CS* and DS* low 3

t5 Setup, Address valid to DS* (service acknowledge cycles) 4

t6 Setup, Write Data valid to CLK high 0

t7 Setup, R/W* {RD*, WR*} stable to DS* and CS* low (read, write cycles) 0 2,5

t8 (DS* and CS*), or (RD* and CS*), or (WR* and CS*), high 5 6,7

t9 Hold time, CS* low after CLK high (read, write cycles) 5 8

t10 Hold time, DS* {RD*} after valid data 0 Infinity 8

t11 Hold time, Address valid after CLK high 15 8

t12 Hold time, Write Data valid after CLK high 10

t13 Hold time, ACKIN* low after next CLK low 4 9

t14 Clock Period (TCLK) 30 200 10

t15 Clock low time 12 10

Clock high time
t16

Clock duty cycle (50% \ 10%)

t17 Clock rise/fall time 3

t18 RESET pulse width (after power is good and clock is stable)
5 clock

periods

t19 Data Bus out of Hi-Z after CLK low 0 12

t20 Read Data valid after CLK high 35

t21 ACKIN* to ACKOUT* propagation delay 12

t22 ACKOUT* high after ACKIN* high 12

t23 DS* {RD*} high to data bus three-state 0 10

t24 DTACK* assert after CLK high (DTACKDLY = 0) 25

t25 DTACK* assert after CLK low (DTACKDLY = 1) 20

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 130 Datasheet

Table 10. Clocked Timings (Sheet 2 of 2)

Number in

Figures
Description MIN (1) MAX (1) Notes

t26 DTACK* negate after DS* {RD* or WR*} negation 10

t27
ACKOUT* assert after CS* and DS* active on register acknowledge cycle

with no match
 22 13

t28 DTACK* active pull-up time 14

t29 ACKOUT* high after end of cycle 22

NOTES:
1. Unless otherwise noted, all values are in nanoseconds (ns).
2. The reference to DS* and CS* refers to whichever one goes active last; that is, both signals must meet the setup time
requirement.

3. Enabling the Register Acknowledge (‘regack’) feature changes the timing somewhat, even on cycles where ‘regack’ is not being
used.

4. Calculated value; guaranteed by design, but not tested.
5. For Motorola-style interface, refers to R/W*.For Intel-style interface, refers to RD* or WR* (whichever is inactive for that cycle).
6. A cycle must positively end before another begins; that is, control signals shall return to states such that no cycle is pending or active.
7. Guaranteed by design, but not tested.
8. During Register Based Acknowledge cycles, these signals must be held in the correct state until valid data is presented by the
device, as indicated by DTACK* going active. Note that in daisy-chain applications, the response from the chain may be quite long
due to the ACKIN*-ACKOUT* propagation delay required for the actual interrupting device to receive the select
(ACKIN*). Waiting for the active DTACK* from the chain eliminates any timing problems relating to these parameters.

9. ACKIN* must be low for at least one clock period plus setup and hold times if there is only one CD1865 in the daisy chain. If there is
more than one CD1865 in a daisy chain, ACKIN* must be low until it has rippled all the way down the chain.

10.When using the clock out (CKOUT) of one CD1865 to drive subsequent CD1865s (such as in daisy-chain environments), CKOUT is
skewed (delayed) by 3 ns from the internal clock. Therefore, on subsequent CD1865s, setup times are improved by 3 ns and hold
times are derated by 3 ns.

11. For clock periods greater than 100 ns (10 MHz or less clock), rise and fall time may be 5 ns maximum.
12.Greater than a ‘0’ by design, but not tested.
13.This is the time for ACKOUT* to assert on register acknowledge cycles. ACKOUT* asserts if the device determines the

acknowledgment is not intended for that part. If ACKOUT* asserts, the device does not drive the data bus or assert DTACK*. These
functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

14.DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 volts. Then DTACK* goes to an ‘open-
drain’ (high-impedance) state.

Figure 29. Clocked Bus Interface Reset

VCC

CLK

t
18

RESET*

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 131

Figure 30. Clocked Bus Interface Clocks

Figure 31. Clocked Bus Interface Read Cycle, Motorola-Style Handshake

t
16

t
14

t
15

CD1865
CLOCK

DS*

t
1

t
8

NEW CYCLE MAY BEGIN

t
10

CS*

t
7

t
9

R/W*

ADDRESS

t
4

DON’T VALID CARE

t
11

DON’T CARE

DON’T CARE

t
19

t
20 t 23

READ DATA UNDEFINED VALID

DTACK*

t
24

t
25

ACKIN*

t
26

t
28

ACKOUT*

t
27

t
29

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 132 Datasheet

Figure 32. Clocked Bus Interface Service Acknowledgment Cycle, Motorola-Style Handshake

 CD1865
CLOCK

DS*
t
5

t
2

t
8

NEW CYCLE MAY BEGIN

CS*

t
8

t
10

t
7

R/W*

ADDRESS DON’T CARE VALID

t
11

DON’T CARE

READ DATA

t
19

t
20

UNDEFINED

t
23

VALID

DTACK*

t
24

t
25

ACKIN*

t
3

t
13

t
26

t
28

ACKOUT*

t
21 t

22

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 133

Figure 33. Clocked Bus Interface Write Cycle, Motorola-Style Handshake

 CD1865
CLOCK

DS*
t1 t8

NEW CYCLE MAY BEGIN

CS*
t9

t7

R/W*

ADDRESS

t4

DON’T VALID
CARE

t11

DON’T CARE

DON’T CARE

WRITE DATA DON’T CARE

t6
t12

VALID DON’T CARE

DTACK*

t24 t25

ACKIN*

t26
t28

ACKOUT*

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 134 Datasheet

Figure 34. Clocked Bus Interface Read Cycle, Intel-Style Handshake

CD1865
CLOCK

RD*

CS*

t1

t9

t10

t8

NEW CYCLE MAY BEGIN

t7

WR*

ADDRESS

t4

DON’T VALID CARE

t11

t23

DON’T CARE

DON’T CARE

READ DATA

t19 t20

UNDEFINED VALID

t25

DTACK*

t24

ACKIN*

t26
t28

ACKOUT*

t27

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 135

Figure 35. Clocked Bus Interface Service Acknowledgment Cycle, Intel-Style Handshake

CD1865
CLOCK

RD*
t5 t2 t8

t8 t10

CS*

t7

WR*

t11

ADDRESS DON’T CARE VALID DON’T CARE

t19
t20 t23

READ DATA

DTACK*

ACKIN*
t3

t24

UNDEFINED

t25

VALID

t26

t28

t13

ACKOUT*
t21 t22

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 136 Datasheet

Figure 36. Clocked Bus Interface Write Cycle, Intel-Style Handshake

10.5.2 Unclocked Bus Interface

Unclocked timing diagrams represent worst-case synchronization delays. That is, they reflect the maximum number of
clock cycles required to complete the operation.

Internally, the CD1865 fully synchronizes all signals; thus, the user need not be concerned with setup times or
metastability. The vast majority of CD1865 designs employ an unclocked Bus Interface.

CD1865
CLOCK

WR*
t
1

t
8

CS*

t
9

t7

RD*

t4
t11

DON’T CARE

ADDRESS DON’T VALID
CARE

DON’T CARE

t6 t12

WRITE DATA DON’T CARE VALID DON’T CARE

DTACK*

t24 t25

t26

t28

ACKIN*

ACKOUT*

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 137

All times are based on a master clock (CLK) of 15 MHz. All times are measured in nanoseconds. Intel-style handshake
signals (where appropriate) are shown in {curly brackets}.

Table 11. Unclocked Timings (Sheet 1 of 2)

Number in

Figures
Description MIN (1) MAX (1) Notes

t1 Setup time, Address to CS*, DS* {CS*, RD* or WR*} 3 2

t2 Setup time, R/W* to CS* or DS* 0 2

t3 Hold time, Address after CS* or DS* {CS* or RD* or WR*} 0 3,4

t4 R/W* hold time after CS* and DS* 3

t5

Delay time, DTACK* assert to valid Read Data:

If DTACKDLY = 0

If DTACKDLY = 1

25

-12

t6

DTACK* assert after CS* or DS* {RD*} or ACKIN*

 If DTACKDLY = 0

If DTACKDLY = 1

75

85
 2,5

t7 Hold time, Read Data after CS* and DS*{RD*} high 1 12 3,6,7

t8

CS* or DS* {RD*} high from DTACK* low

If DTACKDLY = 0

If DTACKDLY = 1

25

1
 4,4.,8,7

t9 DTACK* inactive from (CS* or ACKIN*) or DS* high 12 3,9,4

t10 DS* {RD*} high pulse width 5 4

t11 Setup time, Address to ACKIN* 10 10,11

t12 Setup time, Write Data to DS* {or WR*} low 0

t13 Hold time, Write Data after DS* {or WR*} high 0

t14 x_REQ* deassert after DTACK* asserted 2Tclk+30 12

t15 Setup time, R/W* {WR*} and CS* to ACKIN* low 0 13

t16 x_REQ* reassert delay after write to EOSRR 2Tclk+30 14,15

t17 ACKIN* assert/deassert to ACKOUT* assert/deassert prop delay 15

t18 Data bus out of high-impedance after DS* {RD*} low 3 16

t19 Setup time, Address to DS* {RD*} during acknowledge cycles 4

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 138 Datasheet

Table 11. Unclocked Timings (Sheet 2 of 2)

Number in

Figures
Description MIN (1) MAX (1) Notes

t20
ACKOUT* assert after CS* and DS* {RD*} active on register

acknowledge cycles with no match
 25 17

t21 DTACK* active pull-up time 0 18

NOTES:
1. Unless otherwise noted, all values are in nanoseconds (ns).
2. During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes active
(low) last.

3. During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes inactive
(high) last.

4. This specification is with respect to whichever goes inactive (high) last.
5. The values given is for 15-MHz operation. The time depends on system clock rate and the chosen DTACKDLY option. The actual
time in any case can be determined by the formula:
If DTACKDLY = 0, then the time is 1.5(Tclk) + 30 ns
If DTACKDLY = 1, then the time is 2.0(Tclk) + 35 ns

6. This specification is with respect to whichever of ACKIN* and DS* {RD*} goes active (low) last.
7. The data bus is three-stated immediately after removal of DS* {RD*}. The device is guaranteed to be off the bus by the specified
maximum time. The time can be as short as the minimum time. The hardware design should ensure that the data has been read
before DS* {RD*} is removed.

4. In multiple CD1865 designs, the Interrupt Acknowledge cycle must be long enough to accommodate the ACKIN* to
ACKOUT* daisy-chain propagation delay from the first to the last CD1865. ACKIN* must remain low until after DTACK*
asserts.

8. For Acknowledge cycles, this specification refers to ACKIN* instead of CS*.
9. During Interrupt Acknowledge cycles, ACKIN* is asserted instead of CS*; CS* should remain high. Note that ACKIN* timing is not
always the same as CS*.

10.During acknowledge cycles, addresses must propagate through the Service Match Registers. If a service request is pending on this
CD1865, the match must finish before ACKIN* asserts. This is ensured by the specifications.

11. This specification is with respect to ACKIN* only.
12.This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ*, MREQ*).
13.This specification is with respect to DS*. CS* and R/W* must be high before the assertion of DS* to avoid the possibility of the

CD1865 misinterpreting the cycle as a read or write.
14.This is the time required to reassert a service request if the internal conditions of the CD1865 are such that the request should

be asserted.
15.This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ*, MREQ*).
16.The data bus is guaranteed to become active after DS* {RD*} low and before data is valid.
17.This is the time for ACKOUT* to assert on register acknowledge cycles. ACKOUT* asserts if the part determines the

acknowledgment is not intended for that part. If ACKOUT* asserts, the part does not drive the data bus or assert DTACK*. These
functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

18.DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line reaches 1.5V. At that time, DTACK* switches to an
‘open-drain’ (high-impedance) state.

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 139

Figure 37. Unclocked Bus Interface Read Cycle, Motorola-Style Handshake

ADDRESS

t1

VALID

t3

t2 t4

R/W*

CS*, DS*

t10

t18 t5 t7

READ DATA INVALID VALID

DTACK*

t6 t8 t9 t21

ACKOUT*

t20

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 140 Datasheet

Figure 38. Unclocked Bus Interface Service Acknowledgment Cycle, Motorola-Style Handshake

ADDRESS

t11

VALID

t3

ACKIN*

ACKOUT*

t17 t17

R/W*
CS*

DS*

t15 t4

t19 t10

t18 t5 t7

READ DATA INVALID VALID

DTACK*
t6 t8 t9 t21

t14

x_REQ*

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 141

Figure 39. Unclocked Bus Interface Write Cycle, Motorola-Style Handshake

ADDRESS

t1

VALID

t3

R/W* t2 t4

CS*

DS*
t10

WRITE DATA

t12 t13

VALID

DTACK*
t6 t8 t9 t21

x_REQ*
t16

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 142 Datasheet

Figure 40. Unclocked Bus Interface Read Cycle, Intel-Style Handshake

ADDRESS VALID

CS*
t1

t3

RD*

t10

t5
t18 t7

READ DATA INVALID VALID

DTACK*
t6 t8 t9 t21

ACKOUT*
t20

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 143

Figure 41. Unclocked Bus Interface Service Acknowledgment Cycle, Intel-Style Handshake

 ADDRESS

t11

VALID

t3

ACKIN*

ACKOUT*

t17 t17

WR*
CS*

t15 t4

RD*

t19 t10

t18 t5 t7

READ DATA INVALID VALID

DTACK*
t6 t8 t9 t21

t14

x_REQ*

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 144 Datasheet

Figure 42. Unclocked Bus Interface Write Cycle, Intel-Style Handshake

ADDRESS VALID

CS*
t1 t3

WR*
t10

WRITE DATA

t12 t13

VALID

DTACK*
t6 t8 t9 t21

x_REQ*
t16

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 145

11.0 Package Specifications

22.95 (0.904)
23.45 (0.923)

19.90 (0.783)
20.10 (0.791)

0.22 (0.009)
0.38 (0.015)

0.65
(0.0256)
BSC

13.90 (0.547)
14.10 (0.555) CD1865

100-Pin MQFP (JEDEC)

Pin 1 Indicator

16.95 (0.667)
17.45 (0.687)

Pin 100

Pin 1

0.65 (0.026)
0.95 (0.037)

2.57 (0.101)
2.87 (0.113)

1.60 (0.063) REF

0.13 (0.005)
0.23 (0.009)

3.40
(0.134)
MAX

0.25
(0.010)
MIN

0° MIN
7° MAX

NOTES:
1. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2. Before beginning any new design with this device, please contact Intel for the latest package information.

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 146 Datasheet

Leaded and lead-free (RoHS compliant) versions are both available.

Ordering Part Numbers:

Leaded version: – VG-PD186510-QCB (MQFP);

Lead-Free version (RoHS compliant): – VG-PD1865109-LF-QCB (MQFP);

12.0 Ordering Information

The order number for the -pin device is:

VG-CD186510-LF-QCB

Product line:

Revision †

Communications, Data

Part number

Internal reference number

 LF = Lead-Free
 (RoHS compliant) only

Temperature range:

C = Commercial

Package type:

MQFP (metric quad flat pack)

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 147

Index

A
abbreviations 13
absolute maximum ratings 127

access duty cycle 84
acknowledging service requests 44

acronyms 13

addressing

Intel versus Motorola 51

unclocked versus clocked bus 52

B
bit rate constants

CLK = 15 MHz 50

CLK = 20 MHz 50

CLK = 25 MHz 49
CLK = 33 MHz 49

bit rate options 47, 48
bus interface

Intel versus Motorola 51

unclocked versus clocked bus 52

C
cascading service 43

CD1865 initialization 84, 88
CD18XX product family

CD180 15

CD1864 15
CD1865 15

Channel registers

Channel Command 112
Channel Control Status 118

Channel Option Register 1 116

Channel Option Register 2 116
Channel Option Register 3 117

Modem Change 123

Modem Change Option Register 1 124

Modem Change Option Register 2 125

Modem Signal Value 125

Modem Signal Value Data Terminal
Ready 126

Modem Signal Value Request-to-Send

126
Receive Bit Rate Period Registers (High/

Low) 120

Receive Time-Out Period 120
Receiver Bit 119

Service Request Enable 112

Special Character Register 1 121
Special Character Register 2 122

Special Character Register 3 122

Special Character Register 4 123
Transmit Bit Rate Period Registers (High/

Low) 121

Channel registers, listing of 95, 97
clock options

1¥ 48

2¥ 47
clock oscillator, external 47

clocked bus interface 52, 54, 128
code sequence

interrupt 43

polled 42

D
daisy chaining 19, 27, 44, 54

device selection considerations 15

E
electrical characteristics

AC 128

DC 127

external clock oscillator 47

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 148 Datasheet

F
fair share

internal operation 31
interrupt scheme 11

priorities and 31

FIFO
access 84
Empty 35

overflow 33, 61
overrun 33, 58

pointers 27

receive 18, 19, 32, 58, 60, 61
receive data 62
receive exception 18

receive status 32, 61

status 58, 62

timer operations 60

transmit 18, 32, 35
full interrupt

type A 36, 37

type B 36, 38
functional description 18

G
Global registers

Configuration registers

Global Service Vector 102
Modem Service Match 100

Prescaler Period (High/Low) 100

Receive Service Match 101
Service Request Configuration 98

Transmit Service Match 101

Miscellaneous registers
Global Firmware Revision Code 98

Service Request/Interrupt Control regis-
ters

Channel Access 107

Global Service Channel Register 1 106

Global Service Channel Register 2 106
Global Service Channel Register 3 106

Modem Request Acknowledge 105

Receive Request Acknowledge 105

Service Request Status 103

Transmit Request Acknowledge 105

Global registers, listing of 94, 96

H
Hex address

8-bit 94

Intel 94

Motorola 94

I
I/O operations, basic 90
Indexed Indirect registers

End-of-Service Request 111

Receive Character Status 110
Receive Data 109

Receive Data Count 108

Transmit Data 111
Indexed Indirect registers, listing of 94, 97
initialization

CD1865 84, 88

channel 89
global 86, 89

service request 86
Intel addressing 51

Intel bus interface 51

interfacing examples
680X0-family processors 55

80X86-family processors 55

VME bus 55
interfacing to the host system

full interrupt – type A 36, 37
full interrupt – type B 36, 38

polled interface 40

single interrupt 36, 39
software polled 37

internal block diagram 22, 46

internal operation 20, 25

internal service acknowledge 30
internal structure

background 24

foreground 24

Intelligent Eight-Channel Communications Controller – VG-CD1865

Datasheet page 149

interrupt and polled code sequences, compari-
son 42

interrupt service
modem 92
receive 91

transmit 92

interrupts

fair share 11

Good Data 11
vectored 11

L
listing of

Channel registers 95, 97

Global registers 94, 96
Indexed Indirect registers 94, 97

timing information 128

M
modem interrupt service 92

modem pins as input/output 35
modem signal change 35

modes

Failure 44
Flow Control 19

Idle 84

Indexed Addressing 18
Mixed 26, 37, 40, 45

Polled 93

Motorola addressing 51
Motorola bus interface 51

multiple CD1865s without cascading 44

O
Off-Limit registers 84

operating conditions 127
operations

I/O basic 90

interrupt response 90
ordering information 146

P
package specifications 145

pin information
pin assignments 17

pin diagram 16
polled code sequences and interrupt, compari-
son 42

polled interface 40

Prescaler 86
priorities and fair share 31

programming examples 88
programming registers 83

Q
quick reference register map 94

R
receive interrupt service 91
receive service requests

receive exception 33

receive Good Data 32
receive timer operation 34

receiving data 88
register description 94
register map 94

register summary 96

registers, programming
Channel 83

Global 83

Indexed Indirect 83
Off-Limit 84

S
service acknowledge

hardware-based 36
software-based 36

service request logic, implementation 28
service requests

acknowledging 44

implementing 35
interrupt operation 26

Intelligent Eight-Channel Communications Controller – VG-CD1865

page 150 Datasheet

modem signal change 32, 35
receiving data 32, 88
transmit service requests 35
transmitting data 32, 87
types of 31

single interrupt 36, 39
software interface
choosing 26

interrupt-driven 26
polled 26

software polled 37
specification, electrical 127

state machine logic 29
system bus interface 46

system clock 46, 47

system interface considerations 47

T
theory of operation 10, 26

throughput limits, maximum 51
timing information, listing of 128

timings

clocked bus interface
clocks 131

read cycle, Intel-style handshake 134

read cycle, Motorola-style handshake

131
reset 130

service acknowledgment cycle, Intel-
style handshake 135

service acknowledgment cycle, Motor-
ola-style handshake 132

write cycle, Intel-style handshake 136

write cycle, Motorola-style handshake
133

unclocked bus interface

read cycle, Intel-style handshake 142
read cycle, Motorola-style handshake

139
service acknowledgment cycle, Intel-

style handshake 143

service acknowledgment cycle, Motor-
ola-style handshake 140

write cycle, Intel-style handshake 144

write cycle, Motorola-style handshake

141
transmit interrupt service 92

transmit service requests 35
transmitting data 87

U
unclocked bus interface 52, 53, 136

V
vectored interrupt structure 11

